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Abstract—The adoption of server virtualization and cloud
computing has enabled high flexibility of service execution in
the Internet. It also promises the efficient use of resources
including power. At present, the cloud infrastructure (physical
machines and cloud platforms) and the services employing the
infrastructure are managed by independent entities. As a result, it
is difficult to jointly configure hardware and software resources,
which may introduce significant inefficiency of resource utiliza-
tion. Often infrastructure providers over provision resources to
accommodate a growing demand, but the cost of such inefficiency
is gradually being felt by both parties. This paper experimentally
examines the effect of system configuration (concurrency) on the
power consumption and latency of a video hosting server. We find
that the usefulness of concurrency is greatly influenced by the
interplay of underlying leased resources and by the interaction
of virtual machines with these resources. However, the exact
nature of this interplay is difficult to quantitatively establish
and, therefore, it is not presented to service providers. Our
study encourages the scientific community to pay attention to
this aspect and to undertake a more rigorous investigation based
on practical observations.

Index Terms—Concurrency, parallel programs, power con-
sumption, server power consumption, processor power con-
sumption, virtual machines, latency, performance, virtualized
environment

I. INTRODUCTION

As the Internet assumes a significant place in our daily life,
coping up with its fast-changing structure as well as contents
are becoming formidable challenges. Each year hundreds of
exabyte of data are generated, processed and shared and
millions of additional servers are installed world wide to
accommodate them. According to a recent report by Cisco
Global Cloud Index [1], the global data center IP traffic will
reach 554 exabyte per month by 2016. In comparison, this
has been 146 exabyte per month in 2011. Likewise, the global
cloud IP traffic will reach at 355 exabyte per month by 2016
(from 57 exabyte per month in 2011). The corresponding
magnitude of workload per installed cloud server will increase
by more than twofold by 2016 compared to the workload per
installed server in 2011. Likewise, the estimated worldwide
server deployment in 2010 was 40 million units [2], but
additional servers have been steadily deployed since then. The
latest figure from the International Data Corporation (IDC)1

1http://www.idc.com/getdoc.jsp?containerId=prUS24285213 (last visited
November 25, 2013).

indicates that server unit shipment during the first two quarters
of 2013 amounts to 3.9 million. Unfortunately, independent
studies reveal that most of these servers are underutilized,
typically operating at 30 to 70% of their full capacity [3],
[4], even though their idle power consumption amounts to 50
- 60% of their peak power consumption [5], [6], [7].

One of the direct consequences of dealing with big data
is a rising power consumption. The power consumption of
data centers (servers, storage, communication, and cooling
infrastructure) has always been significant but the big data
phenomenon is making it more significant. According to
Koomey, data centers consumed approximately 203.4 TWh
to 271.8 TWh annually between 2005 and 2010 [ 8]. These
figures are expected to rise as the amount of deployed servers
rises.

The industry is trying to deal with these challenges by
deploying highly efficient and highly capable systems, both
software and hardware. For example, the introduction of
multicore processors has significantly increased the compu-
tational capacity of servers. Similarly, the industry is adopting
server virtualization [9] and cloud computing [10] to effi-
ciently utilize hardware resources [11]. Virtualization enables
to encapsulate Internet applications in virtual “machines” so
that multiple virtual machines can share the same hardware
resources while each virtual machine operates in a secured and
dedicated execution space. Virtual machines can be migrated
from one physical machine to another at runtime [12], [13],
[14]. The advantage of this feature is twofold. To begin with,
virtual machines are not bound to any specific server, so that
their owners can change host servers whenever they wish to
[15]. Secondly, infrastructure owners can freely decide where
and for how long individual virtual machines should execute,
so that they can efficiently utilize hardware resources [16],
[17], [18].

A substantial body of work exists on the quantitative evalu-
ation of the energy-efficiency and performance of hardware
and software systems, but a comprehensive evaluation of
the performance and energy-efficiency of large-scale servers
operating in a cloud environment is, by and large, theoretical
or limited to simulation or benchmarks. Practical evaluation
of real systems is vital for both infrastructure providers and
service providers. The former benefit from it because they
can understand the power consumption characteristics of the
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software platforms they host, which in turn leads to the
choice of appropriate power management strategies to save
power without affecting the operation condition of the software
platforms. Similarly, the latter benefit from it because they
can understand the resource requirements of their systems and
frugally lease and consume resources.

In this paper, we experimentally examine the interplay
between service configuration at the application level and
resource configuration at the hardware level. We employ a
transcoder as an Internet application and focus on the con-
current execution of video transcoding. We evaluate the time
consumed by the transcoder to process individual as well as
batch requests and the power and energy consumption of the
server during this time.

The remaining part of this paper is organized as follows:
In section II, we provide a brief discussion on hardware and
software level parallelism in Internet services. In section III,
we describe our experiment setting. In section IV, we provide
a detail insight into our experiment results and attempt to
explain the observations. Finally, in section V, we provide
concluding remarks and outline our future work.

II. CONCURRENCY IN INTERNET SERVERS

Typical Internet servers (such as video hosting applications)
process a large number of similar but independent requests
from users. When considered separately, the requests can be
regarded as simple, but together, they can generate a huge
amount of workload on the servers. One of the strategies to
ensure scalability is parallelization of computations both at
the hardware and software level. At the hardware level, each
physical core of a multicore processor is equipped with its
owns digital phase-locked loop and two or more hardware
threads (or logical cores). Each hardware thread in turn has
its own program counter and a register file, so that it can be in-
dividually halted, interrupted or directed to execute a specified
process. This type of architecture not only enables to process
requests in parallel but also provides highly flexible voltage
and frequency scaling for a wide range of workloads, since
each core can be scaled or switched-off separately. Likewise,
at the software level requests are assigned to separate processes
or threads, so that they can be executed in parallel with other
requests.

In a cloud environment, the applications providing services
to users and the infrastructure (both the cloud platform and
the physical servers) up on which the applications run are
not managed by one and the same body. As a result, optimal
configuration of both systems at the same time is a difficult
task. For service providers, leasing the right amount of re-
sources is critical to achieve business goals and to minimize
cost. This decision depends on many aspects including the
service type, the anticipated workload, and the quality of
service. Even though sufficient knowledge about these aspects
is available, the performance of services (as well as the cost
of service execution) can still be undermined by the way
resources are allocated to services. At present, resources are
leased in more abstract and static terms (by specifying the
number of virtual nodes (cores), the size of memory, and

the communication bandwidth) [19], but this does not specify
whether these resources will be available for exclusive use and
whether the underlying system structure permits their optimal
configuration.

In this paper, we shall experimentally demonstrate how the
quality of service computation can be affected by system
configuration, both at the application and cloud level. We
argue that resource leasing based on abstract contracts does
not ensure the efficient utilization of physical resources; nor
does it ensure that the availability of rich resources directly
correlates with a high performance (throughput, latency).

A. Hardware Threads

At the hardware level, Amdahl’s Law2 [20] is widely em-
ployed to measure the improvement in the processing speed of
multicore processors, but it considers the processor in isolation
and does not take the interplay of multiple subsystems into
account [21]. In reality, hardware threads share resources
which may lead to contention and, as a result, to a reduced
speed-up. Unless a service’s workload is predominantly CPU
intensive, leasing a large number of virtual cores does not
necessarily mean getting a high computational capacity. To
determine the appropriate number of virtual nodes, additional
data pertaining to memory bandwidth, average memory access
latency, and disc drive bandwidth should be made available.

B. Software Processes/Threads

Most Internet-based applications employ application-level
concurrency to handle individual requests. Whether they
should employ software threads or processes depends on what
is significant for them. A process has a self-contained exe-
cution environment (memory space) and effectively isolates a
request from all other requests, so that the operation condition
of one request (such as a crash) does not affect the others.
But processes have a large management overhead and require
more resources. On the other hand, software threads share the
same memory space and managing threads is less expensive.
However, individual requests are not processed in isolation.

Regardless of the the type of concurrency, applications
typically attempt to process a large number of requests in
parallel by creating a large number of processes or threads.
However, without the knowledge of the underlying infrastruc-
ture, concurrency may not improve the application’s perfor-
mance and, in fact, may increase their resource consumption
(including power consumption). In the subsequent sections
we shall experimentally demonstrate how this can actually
happen.

2 Amdahl’s Law states as follows:

speed− up =
1

1− p+ p
n

(1)

where p stands for the fraction of task that can be computed in parallel and
n is the number of logical cores. (1− p) stands to the fraction of work that
should be executed sequentially.
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III. EXPERIMENT SETTING

Our physical server is a SuperMicro machine employing a
mainboard with four sockets. In each socket an Intel Xeon E5-
4603 CPU (Sandy Bridge, quad core, 2.0 GHz) is installed.
Altogether we have 16 physical and 32 logical cores. More-
over, the server has 16 GB main memory, an XFS-formatted
2 TB hard disk with 155 MB/s sustained data rate, and a 10
Gbps Intel network interface card. Because we also employ
virtual machines in our experiments, we use KVM3 in an
Ubuntu environment as our hypervisor. We measure power
with Yokogawa WT210 digital power analyzers – the devices
can measure DC as well as AC power consumption at a rate
of 10 Hz and a DC current between 15 μA and 26 A with an
accuracy of 0.1%.

Our application is a GNU/Linux binary avconv video
transcoder that can be accessed via an Apache server. The
transcoder receives a batch of requests to transcode video files.
These videos are either MP4 or FLV videos. The transcoder
converts the videos into AVI format and store them. For
our case, the transcoder receives 1000 requests and for each
request it converts a 10 MB MP4 video to AVI format and
stores the result on the hard disk. Compared to the time
required to transcode a video, the memory access latency and
the hardware write-latency are small. Each request is handled
in a separate process.

In our experiments we considered two scenarios. In the first
scenario, the applications ran on the actual server without en-
capsulating it inside a virtual machine. In the second scenario,
the application was encapsulated in a virtual machine. For
both scenarios, we varied the number of cores the application
used and the number of concurrent processes. We considered
binding 4, 8, 16, 24, and 32 cores for the application and varied
the number of concurrent processes from 1 to 50. For each
experiment, we measured the time the application consumed to
transcode the individual videos as well as the time it consumed
to complete the 1000 tasks. Furthermore, we measured the
power consumption of the server during the transcoding of
the 1000 videos.

IV. EVALUATION

In this section we use different metrics to evaluate the
service execution latency and the power consumption of our
transcoder under different system and resource configurations.
The system configuration refers to the number of parallel
processes that execute simultaneously to transcode video files.
The resource configuration refers to the number of physical
and virtual cores the transcoder employed to fulfill its task,
which is the processing of 1000 requests to transcode a 10
MB video file.

A. Latency

We considered the time the server consumed for processing
each request (τi) as well as the entire requests (τo). In the
first round of experiments, the transcoder was running directly
on the physical machine. τi was minimum when the server

3http://www.linux-kvm.org/page/Main_Page.

processed requests sequentially; it increased consistently as
the number of concurrent processes increased, obviously due
to contention for shared resources, notably for writing videos
on the disk drive. As the number of cores the application binds
to increased, τi increased even further, for no obvious reason.
Fig. 1 and Fig. 2 display the values of τi when the transcoder
was assigned 4 and 32 physical cores, respectively. Regardless
of the number of physical cores available to the transcoder,
τi increased with the increment in the number of concurrent
processes.

On the other hand, τ0 reduced as the number of concurrency
increased, but the gain was conspicuous for up to 10 processes,
regardless of the number of physical cores assigned to the
application. Then τ0 tended to increase again, showing no
visible correlation with the number of physical cores and
concurrency.

In the second round of experiments, the transcoder ran on a
virtual machine to which was allocated 4 and 8 virtual cores.
We conducted the experiment in isolation, i.e., no other virtual
machines were running in parallel, to ensure that the resources
allocated to the virtual machine were exclusively available for
its consumption. Similar to the previous setup, τ i increased as
the number of concurrent processes increased (See, for exam-
ple, Fig. 3). However, compared with the previous setup (when
the transcoder was running directly on the physical machine),
τi nearly tripled for each request in both configurations (for
4 as well as 8 virtual cores). This is understandable since the
virtual cores are emulated cores managed by an underlying
software monitor, which plays the role of arbitration and
requires its own time for this task. Alike the previous case,
τo reduced as the number of concurrent processes increased
up to 10; unlike the previous case, τo remained unchanged
afterwards. This is interesting, since the performance of the
transcoder was more predictable when virtual machines were
used, even though the predicted behavior was not necessarily
encouraging (τo nearly doubled when virtual machines were
used).

B. Power Consumption

Similar to latency, the power consumption of the server
can best be understood as a random variable. Understanding
its characteristics can be useful for (1) avoiding overloading
of the power supply system; and (2) estimating the energy
consumption of the workload. For (1) we examined the
cumulative distribution function (CDF) of the instantaneous
power consumed by the server when processing the individual
requests and, for (2), we examined the average power per
request for each configuration (i.e., by varying both the number
of concurrent processes and the number of allocated cores).

Fig. 6 displays the CDF of the power consumed by the
server when the transcoder was directly running on the physi-
cal machine. We chose parallel processes 1, 7, 30, and 40 for
discussion to make the observation more visible.

First of all, we could observe a noticeable variation in
the power consumption due to the logical deactivation of
some of the physical cores – electrically switching-off the
physical cores was not possible because this function was not
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Fig. 4: τo as a function of the number of parallel processes when 8, 16, 24, and 32 physical cores were employed by the
transcoder.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

task

tim
e(

s)

 

 

concurrent 1
concurrent 3
concurrent 5
concurrent 7
concurrent 9

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

task

tim
e(

s)

 

 

concurrent 10

concurrent 20

concurrent 30

concurrent 40

concurrent 50

Fig. 1: τi as a function of the number of parallel processes
when 4 physical cores were employed by the transcoder.
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Fig. 2: τi as a function of the number of parallel processes
when 32 physical cores were employed by the transcoder.
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Fig. 6: The CDF of the server’s power consumption during the transcoding of 1000 10 MB videos with 8, 16, 24, and 32
physical cores.
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Fig. 3: τi as a function of the number of parallel processes
when 4 virtual cores were employed by the transcoder.

available for us. Still, the server’s power consumption varied
between approximately 168 and 230 W when the transcoder
was employing 4 cores, but it stayed in the neighborhood of
200 W much of the time when the transcoder employed all
the 32 cores. Additional power could have been saved if the
idle cores were physically turned off.

Secondly, concurrency influenced the instantaneous power
consumption when the transcoder was employing few phys-
ical cores (4 and 8), but as the number of employed cores
increased, concurrency had little impact on the instantaneous
power consumption of the server.

The instantaneous power consumption of the server in-
creased slightly when virtual machines were used. However,
its characteristic was less affected by concurrency in this case.
Fig. 7 displays the CDF of the server’s instantaneous power
consumption when the transcoder was executing on a virtual
machine, binding 4 and 8 virtual cores. This can be due to the
cost of virtual machine monitoring, which continuously ran at
the background and added its own share to the overall power
consumption of the server.

Another measure of the impact of server/service configura-
tion on the power consumption of the server is the average
power consumed to complete the batch workload. Fig. 8
displays the average power consumption of the server when
the transcoder directly ran on the physical machine and when
virtual machines were employed.

The average power consumption was higher when the
transcoder directly employed 4 and 32 physical cores and
always lesser when it employed 24 physical cores. Further-
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Fig. 7: The average power consumption of the server during the transcoding of 1000 10 MB videos with 4 and 8 virtual cores.
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Fig. 5: τo as a function of the number of parallel processes
when 4 and 8 virtual cores were employed by the transcoder.

more, the average power decreased as the number of processes
increased up to ten and then it increased for up to 30 processes.
Then its characteristic became more unpredictable (random).
For the virtual machines, the average power decreased as a
function of concurrency for up to 20 virtual cores in both
configurations (4 and 8 virtual cores) and remained, by and
large, the same for a higher magnitude of concurrency.

Compared to the set up with direct binding to physical
cores, the server consumed less power when a virtual machine
was used. This should be understood in context, however. As
can be seen from Fig. 5, the time the transcoder consumed
to complete the batch task (τo) nearly tripled when virtual
machines were employed. This means that the server was
computing at a much slower speed as a result of which it
consumed less power. We shall see shortly that the energy

consumption of the server, which is a function of both power
and latency, is a better quantity to evaluate the relationship
between virtualization and concurrency.

C. Energy Consumption

One of the quantities that determine the cost of service
execution is energy. It is expressed as the integration of power
consumed during transcoding a video file: E(t) =

∫ t

0 p(τ)dτ .
The energy consumption of a process executed at a high speed
consuming a large amount of power may equal to the energy
consumption of a process which takes a longer period of time
to execute while consuming a small amount of power.

As can be seen in Fig. 9, the energy consumption of
the server when the transcoder ran on the physical machine
first tended to decrease as the number of parallel processes
increased, but once this number went beyond 10, it steadily
increased until it reached 30 for all the physical configurations.
Then the characteristic becomes unpredictable. We cannot give
a plausible explanation as to why a decline is observed for
concurrency beyond 30, because we do not have sufficient
statistics. We leave this task as a future work. Interestingly,
the the server consumed more energy when it employed less
physical cores, even though the power consumption during this
time was lower because more physical cores were logically
isolated. Obviously, a large τo when the transcoder was
employing 4 and 8 cores contributed to the higher energy
consumption.

For the virtual machines, the energy consumption of the
server decreased until the number of concurrency reached 10
and then it stayed unchanged (see Fig. 9). For both 4 and 8
virtual cores, energy consumption doubled in comparison with
all of the configurations of the physical cores, visibly showing
the overhead of resource virtualization.

V. CONCLUSION

Service virtualization and cloud computing promise flexible
and resource efficient computing. Flexibility is possible for
both the service provider and the infrastructure provider.
Service providers are free to migrate their applications en-
capsulated in virtual machines away from one provider to
another provider at anytime they wish, ideally at runtime
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Fig. 8: The mean power consumption of the server when the
transcoder was (top) directly running on the physical machine
and bottom) running on a virtual machine leasing 4 and 8
virtual cores.

(without stopping from providing service), while infrastruc-
ture providers can freely migrate virtual machines from one
machine to another to optimize resource utilization. So far,
however, jointly configuring services and service execution
platforms is a difficult task, partly because these two entities
are managed by two independent owners. This paper experi-
mentally examined the impact of this situation on the latency
of service execution and the energy consumption of a server.

Often service providers lease computing resources (CPU
nodes, storage size, memory size, communication bandwidth,
etc.) based on their anticipated workload and the quality of
service they aim to achieve and configure their applications
accordingly. We have showed that higher-level knowledge of
leased resources alone is not sufficient to fully utilize resources
and to minimize execution cost. We focused on application-
level concurrency in a video transcoding application, because
almost all Internet-based services employ concurrency to speed
up service execution. We showed that concurrency indeed
improved latency and, in fact, reduced energy consumption,
but as the number of concurrent processes increased beyond
a certain amount, concurrency was inefficient. In a virtualized
environment, the contribution of concurrency was limited
beyond a certain amount, depending on the number of virtual
cores the virtual machines are allocated.

Admittedly, we have observed several phenomena which
we could not sufficiently explain (for example, the energy
consumption of our server increased as the number of con-
current processes increased from approximately 10 to 30 for
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Fig. 9: The mean energy consumption of the server when the
transcoder was (top) directly running on the physical machine
and bottom) running on a virtual machine leasing 4 and 8
virtual cores.

all the physical cores we considered, but it decreased as the
number of processes increased beyond 30), partly for lack
of sufficient statistics. In future, we aim to undertake more
elaborate experiments to address some of the open issues.
We also encourage the scientific community to join us in this
endeavor.
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