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Abstract— Human beings live and work in close proximity to dangerous gases. Chemical accidents often cause
considerable damages to human lives as well as properties and their short- and long-term impact on the environment
can be high. Hence, diligent monitoring and management of these gases are of profound importance. In industries where
chemical accidents pose potential explosions and health hazards, wired sensors are installed in strategic locations. In
some industries, employees are required to carry with them portable sensing devices in addition. Still, achieving high
spatio-temporal resolution is challenging, since dense deployments impede the mobility of employees, robots, or other
mobile objects. In this paper, we propose the use of nanotechnology and wireless sensor networks for monitoring toxic
gases. Nanotechnology offers the possibility of developing gas sensors having small form-factors and high sensitivity.
Wireless sensor networks enable high spatio-temporal sensing, in-network processing, and multi-hop communications.
The paper shares our experience with a wireless sensor network monitoring ammonia. The network consisted of 21 sensor
nodes, four of which integrated arrays of ammonia sensors while the rest served as intermediate nodes.

Index Terms— Ammonia, hydrogen sulphate, latency, monitoring, multihop communication, nanosensors, nanotechnol-
ogy, response time, toxic gas detection, wireless sensor networks

I. INTRODUCTION

Human beings often live and work in close proximity to
dangerous gases. During oil exploration and refinery, toxic
gases, such as ammonia and hydrogen sulfide, are produced as
byproducts [1], [2]. The gases are useful for producing fertil-
izers, environment friendly refrigerants, explosives, munition
plants, and pharmaceuticals [3], but they are also dangerous.
Ammonia is a highly reactive, soluble alkaline gas which is
lighter than air. If inhaled, it cauterizes respiratory tracts and
can be fatal at concentrations above 5000 parts per million
(ppm). Similarly, hydrogen sulphide is an extremely toxic and
flammable gas which produces a rotten egg odor discernible
at concentrations below 15 ppm.

Chemicals accidents cause human losses and damage to
properties and their effect on the environment can be detrimen-
tal [4]. In 2021, a chemical accident in Ludwigshafen, Ger-
many, caused an explosion and the release of 150 kg of methyl
diethanolamine into the Rhein river [5]. Four years prior to this
accident (in 2017) a pipeline explosion in the same industry
killed three and seriously injured eight employees. At the time,
the pipelines were transporting ethylene and propylene [6]. In
2015, a chemical industry in the Shandong province of China
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exploded, releasing a highly toxic gas (adiponitrile) into the
environment; 215 people needed immediate medical treatment
and 5 were injured seriously [7]. Cheung et al. [8], citing
the National Census of Fatal Occupational Injuries survey
conducted by the U.S. Bureau of Labor Statistics, observed
that in 2015 there were 4836 workers killed on construction
sites due to illness and fatalities – 9% of these were due to
exposure to hazardous environment and 3%, due to fire and
explosions. Perhaps, the most fateful chemical accident in his-
tory was the 1984 chemical factory accident in Bhopal, India,
which spewed 40 tons of a toxic gas into the environment,
causing a profound and long lasting health hazard to the city’s
inhabitants [9]. In 2015 the European commission published a
list of accidents in chemical industries across Europe that year
along with their causes, estimated damage, and the lessons
learned [10]. In underground mining, employees are likewise
exposed to dangerous gases and explosions sparked by coal-
dust [11].

In industries where chemical accidents pose potential ex-
plosions and health hazards, wired sensors are installed in
strategic locations. In some industries, employees are required
to carry with them portable sensing devices in addition.
Still, achieving high spatio-temporal resolutions is challenging,
since dense deployments may impede the mobility of em-
ployees, robots, equipment, and other objects. Wireless sensor
networks have several advantages. The nodes can be deployed
easily and unobtrusively and their placement can be opti-
mized based on experience and field observations. Similarly,
network maintenance can be carried out without impending
normal working conditions (and in some situations without
involving human presence). Moreover, with the emergence of
nanosensors, dense deployments can be supported to cover

https://orcid.org/0000-0002-7911-8081
https://orcid.org/0000-0002-7748-4344
https://orcid.org/0000-0002-3007-8840 
https://orcid.org/0000-0002-0254-9174
https://orcid.org/0000-0002-9899-1409
https://orcid.org/0000-0002-6574-7848


2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

extensive areas. But there are some challenges associated with
wireless communications. Firstly, compared to wired links,
wireless links are subject to interference and a high degree
of packet loss. Secondly, the transmission range of wireless
transceivers are limited which necessitates multi-hop commu-
nication. Multi-hop communication exacerbate packet loss and
end-to-end packet transmission latency, thereby affecting the
response time of the sensing system.

This paper proposes the use of nanotechnology and wireless
sensor networks for monitoring toxic gases. Nanotechnology
offers the possibility of developing gas sensors having small
form-factors and high sensitivity. The sensing mechanism
relies on the chemisorption and physisorption of gas molecules
on the surface and interface of nano materials such as carbon
nanotubes [12]. The wireless sensor network supports in-
network processing (to reduce the network traffic density)
and multi-hop communication. In our first prototype we focus
on monitoring ammonia. The contributions of this papers are
summarized as follows:

• Gas nanosensors with detection limits reaching 3 parts
per billion (ppb).

• Wafer-scale compatible fabrication of small footprint (2.4
cm × 2.4 cm) devices consisting of 64 gas sensors.

• Low response time compared to commercially available
ammonia sensors.

• A fully functional multi-hop wireless sensor network in-
tegrating arrays of nanosensors for monitoring ammonia.

The remaining part of this paper is organized as follows:
In Section II related work is reviewed. In Section III, the
development and integration of arrays of nanosensors are
discussed. In Section IV, a mathematical model for data
aggregation is presented. In Section V, the set up process and
the performance of a wireless sensor network for monitoring
ammonia is discussed. In Section VI the performance of the
wireless sensor network is evaluated and comparison of results
with state-of-the-art are discussed. Finally, in Section VII,
concluding remarks are given and open issues are identified.

II. RELATED WORK

Recent advances in processor, wireless, and sensor tech-
nologies promise high resolution, distributed, and autonomous
monitoring of dangerous gases in various places.

Chang et al. [13] observe that as the level of pollution
increases worldwide, the amount of volatile organic com-
pounds and toxic inorganic gases populating the air increases,
causing great harm to human life. One of these substances
is aniline. Accordingly, when the body is exposed to aniline
vapor, the skin, the digestive tract, and the respiratory tract
absorb the gas. This may result in different health conditions,
including methemoglobinemia, liver damage, and carcinogen-
esis. The authors developed a nanosensor to monitor aniline
and integrated the sensor into a wearable device that fires an
alarm when the surrounding aniline concentration passes a set
threshold.

Perez et al. [14] propose a wireless sensor network for
monitoring combustible and harmful concentrations of toxic
gases as well as organic vapors, odorant, and amine in a

shipyard. The main focus of the researchers, though, was on
testing the performance of the sensor network in terms of
its response time and reliability. Thus, the authors integrated
off-the-shelf portable gas detectors (Dräger X-am 5000) into
wireless sensor platforms and sampled the sensors every
minute. Their analysis consisted of round trip time (RTT),
packet error rate (PER ) and link quality indicator (LQI) of
the wireless links, taking into account the number of hops the
packets needed to reach their destination. The robustness of
the network and the response time of the overall system were
analyzed from the point of view of a control station outside
the shipyard. The packets needed up to 5-hop to reach the
control station. Accordingly, RTT varied between 30 and 40
ms, and no packets were lost, except for the case of the longest
hop, in which case the PER was 3%. The authors carried out
in-ship tests, considering five different in-ship communication
scenarios. In the first four, RTT, LQI and PER of representative
internal single-hop links were measured. In the last scenario,
they examined PER and RTT for a worst-case multi-hop path
to monitor one of the ship holds, transmitting detector gas
readings to a control station outside the vessel. In all the in-
ship tests, node transmission power was set to its maximum
value (20 dBm).

Asthana et al. [15] propose a wireless sensor network for
monitoring the safety of sewage workers during cleaning
and maintenance. The authors observe that septic tank gases
may have concentrations of methane, carbon dioxide, sulfur
dioxide, ammonia, hydrogen sulphide, nitrogen dioxide, and
carbon monoxide, albeit with different intensities. Of these, the
predominant are methane and carbon monoxide, which are also
the target gases the authors aimed to monitor. The monitoring
system is intended to immediately alert workers as well as
a central station which closely examines the concentration
and distribution of the gases and their long-term impact.
In addition, the central station remotely calibrates all the
gas sensors, adapt their sampling rates and intervals, and
determines the appropriate threshold levels for septic plants
and facilities. The authors integrated a commercially available
gas sensor (MQ-4 gas sensor1), a CO sensor, and a temperature
sensor into an Arduino Uno platform [16] and defined the
following thresholds to fire an alarm: 2.3 ppm for CO and 60
ppm for methane. The CO sensor, in addition, measures the
heat and motion of surrounding objects.

Cheung et al. [8] propose a system for monitoring toxic
gases in construction sites. It consists of a control station,
a sensing subsystem, and an actuating subsystem. The later
includes a flash, an alarm system, and a ventilator to be
activated in case of emergency. An actuating node controls
these components. The sensing subsystem consists of gas
and environmental sensors (temperature and humidity) as well
as routers. Furthermore, the system was integrated with a
building information modeling (BIM), an advanced technology
in construction industry development to fuse different kinds of
construction information into a 3D digital model. The BIM can
be employed in all stages of a project life-cycle, such as plan-
ning, design, construction, operation and maintenance. The

1Hanwei Electronics (www.hwsensor.com).
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integration enables to monitor the construction site visually
and remotely via a spatial, colored interface. The system was
deployed in north Taiwan, in a tunnel having a diameter of 5.6
m and a length of 528 m at a time when an actual underground
construction was taking place. The deployment was intended
to measure the response time of the system as a whole and
the reliability of the wireless sensor network. The wireless
sensors were placed with 100 m separation distance between
them. The authors reported an impressive response time of 1-
2 s. This time includes the detection of a gas concentration
above a set threshold and an end-to-end packet transmission
latency. Moreover, the system was able to alert the control
station by indicating the abnormal condition on the tunnel’s
BIM. At the same time, the control node started the flash, the
alarm, and the ventilator.

III. NANOSENSORS INTEGRATION

The accuracy with which toxic gases can be detected
depends on the surface area to volume ratio of the sensor.
Typically, gas detection takes place when gas molecules
change the resistance of an underlying electric material in
accordance with their atomic property and in proportion to the
interaction intensity. Besides accuracy, sensitivity, selectivity,
and response time are crucial, considering the magnitude of
damage a gas leak can cause.

A. Technology
Our gas sensors are chemiresistors based on semiconducting

single-walled carbon nanotubes (sc-SWCNTs) [17]. The sens-
ing mechanism relies on the chemisorption and physisorption
of the gas molecules on the surface of the nanotubes and
the nanotube-electrode interface which modify the electrical
properties of the system. The sensitivity provided by nano-
materials due to the high surface area to volume ratio is key,
together with a fast response time and selectivity, considering
the magnitude of damage a gas leak can cause. sc-SWCNTs
in particular are known to respond more strongly to ammonia
than to other gases [18]. Such response occurs due to the pres-
ence of free carboxyl acid functional groups on their surface,
which are prone to interact with amine compounds [19]. In
addition, nanotechnology has excellent features such as low
power consumption, high electron transport, and mechanical
properties allowing the fabrication of high sensitive sensors
on flexible and lightweight supports. The later enables the
mounting of the sensors on small robots and Unmanned Areal
Vehicles (UAV) with low loading capacity.

In order to achieve a high sensitivity and a high spatial
resolution, the sensing subsystem consists of an array of 64
chemiresistive sensors. The output of these sensors are multi-
plexed using four 16-channel, low leakage current multiplexers
(ADG706), as shown in Fig. 1.2 The selected current from

2Containing a large amount of sensors in the array can be helpful for various
purposes: (a) to select those with optimal characteristics, (b) to find alternative
sensors when some of them present malfunction, (c) to provide self-validation
by observing the simultaneous response of multiple sensors, (d) to enable
future implementation of multiple materials and their modifications toward
the detection of multiple gases, and (e) to allow deeper signal processing and
mathematical statistics such as cellular nonlinear networks [20].

Fig. 1: The architecture of a 64-channel nanosensor for
detecting ammonia and hydrogen sulfide.

Fig. 2: A wireless sensor node integrating an array of nanosen-
sors for toxic gas detection and a Raspberry Pi and the Zolertia
platform for network management.

each multiplexer is then fed to a transimpedance stage (TIA)
based on IC LMP91000. The output voltage of the TIA is
digitized using a low noise 24-bit ADC (ADS122C04) which
is then supplied to a dedicated microcontroller (ESP32) via an
I2C serial bus. The ADC is programmable at 2 ksps. Having
a dedicated microcontroller is useful for separating the data
processing (preprocessing) stage from other tasks (network
management).

B. System Integration

The sensing subsystem is interfaced with a Zolertia plat-
form (RE-Motes3) via a Raspberry Pi board. The Zolertia
platform is based on Texas Instruments CC2538 System-
On-Chip microcontroller and integrates two IEEE 802.15.4-
compatible wireless transceivers working in the 863-950 MHz
and 2.4 GHz radio bands [21]. On this platform runs the

3https://zolertia.io/product/re-mote/
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Contiki operating system. The sensing subsystem, the Zolertia
platform, and the Raspberry Pi are powered by an external
power bank. Fig. 2 shows the entire system in the deployment
field.

IV. DATA AGGREGATION

The nanosensors generate a large amount of data which
can be spatially and temporally correlated. The data have to
be meaningfully aggregated before they are transferred to a
control station, so as not to congest the network. In chemical
industries and in environments where chemical exposure may
cause a health hazard to employees, different safety conditions
are specified. The American Conference of Governmental In-
dustrial Hygienists4 (ACGIH) [22], [23] defines the Threshold
Limit Values (TLV) as an exposure limit “to which it is
believed nearly all workers can be exposed day after day for
a working lifetime without ill effect”. Similarly, it defines the
Threshold Limit Value Ceiling (TLV-C) as “the concentration
that should not be exceeded during any part of the working
exposure.” The first refers to a long-term exposure and requires
a long-term sensing. In this case, the sensing system should
sample all the sensors periodically and store the data for long-
term analysis. These data are also useful for the study of long-
term pollution. TLV-C, on the other hand, refers to short-term
exposure and requires an alarm to be fired immediately when
a set threshold is crossed. For the second type of sensing, the
system’s response time is a critical performance metric. It is
affected by the sensors’ response time as well as the end-to-
end packet transmission delay. The nominal time is between
20 to 30 seconds, but most oil refineries set an upper limit of
60 seconds [2], [24].

The data aggregation strategy has a direct bearing on the
reliability of the system, the network’s traffic density, the
packet transmission latency, and the lifetime of the network.
If raw data are streamed directly, this will incur a high
communication cost and a considerable latency. Aggregating
data as they propagate towards the control station, on the other
hand, reduces unnecessary redundancy and network traffic but
introduces uncertainty during analysis.

In selecting the best aggregation strategy, we are faced with
two challenges: Firstly, since the nanosensors are sensitive,
their outputs fluctuate even in the absence of a gas. To establish
the statistics of this error, at each sampling interval, we can
take the output of each element of the sensor array as the
outcome of a random experiment. Secondly, when a gas leak
occurs, the perceived intensity varies due to a change in the
spatio-temporal distribution of the gas molecules. A distinction
between the authentic and the spurious fluctuations is critical
during data aggregation. A simple averaging of the sixty-
four nanosensors at a node level introduces bias towards
extreme values and abstracts the variation in the fluctuation.
We chose to employ the min and max operations at each
sampling interval to ensure reliable and safe monitoring. The
min operation minimizes the possibility of overlooking a gas
leak (i.e., false negative is minimized). If the minimum of the
samples is above a set threshold, then we have every reason to

4https://www.acgih.org/

trust the sensor node. The max operation, on the other hand,
minimizes the possibility of overreacting (false positive).

The uncertainty with which a gas leak is detected depends
on the variance in the sampled values. Hence, it is vital to ex-
amine the variance arising from the min and max operations.
Since the outputs of the nanosensors fluctuate in time as well
as at an instance, we can regard them as random variables.
The results of the min and max operations should likewise be
regarded as random variables. The variances of these random
variables encode our uncertainty in the aggregation task.

A. Aggregate Probability Density Function

The min operation compares the values of all the sensors
and selects the one which is the minimum. In case of only
two sensors reporting, it is expressed as:

s =

{
s1 if s1 ≤ s2

s2 if s1 > s2
(1)

For our case (with sixty-four nanosensors), we have the
following relation:

s = min (s1, s2, . . . sn) (2)

Since s is a random variable by virtue of all its inputs being
random variables, it is important to establish its statistics. We
begin with its PDF:5

F (s) = P {s ≤ s} = P {min (s1, s2, . . . sn) ≤ s} (3)

Equation 3 is simpler to evaluate if we consider its comple-
ment, namely,

F (s) = 1− P {s > s} (4)

in which case, we have:

F (s) = 1− P {min (s1, s2, . . . sn) > s} (5)

The right term in Equation 5 describes a condition wherein all
the sensors report a value greater than s:

F (s) = 1− P {s1 > s, s2 > s, . . . sn > s} (6)

Statistically speaking, the nanosensors are independent of one
another, so that:

F (s) = 1− P {s1 > s}P {s2 > s} . . . P {sn > s} (7)

Or:

F (s) = 1−
n∏
i=1

(1− P {si ≤ s}) = 1−
n∏
i=1

(1− Fi (s))

(8)

where Fi (s) is a PDF describing the output of the i-th sensor.
With Equation 8 in place, we can derive the probability density
function as follows:

f (s) =
d

ds
F (s) (9)

5A Probability Distribution Function (PDF) is defines as: F (s) =
P {s ≤ s}, where s is a random variable and s is a real number.
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When a node applies the max operator, it chooses the
maximum value, so that its output as a random variable is
expressed as:

s = max (s1, s2, . . . sn) (10)

The distribution function of this operation is expressed as
follows:

F (s) = P {s ≤ s} = P {max (s1, s2, . . . sn) ≤ s} (11)

Following similar steps as in Equations 7 and 8, we can
determine the PDF of this random variable as follows:

F (s) =

n∏
i=1

Fi (s) (12)

B. Mean and Variance
In order to demonstrate how data aggregation affects the

mean and variance of the output, we consider a normal
condition in which a fluctuation in sensed data arises due
to noise. We consider two theoretical cases, namely, when
the noise is (a) uniformly distributed and (b) exponentially
distributed. When the noise is uniformly distributed, it is
possible to normalize the values so that its domain lies between
0 and 1. Hence, given the noise a nanosensor experiences
can be considered as a uniformly distributed random variable,
U(0,1), its PDF is given as:

Fi (s) =

∫ s

0

du = s (13)

Likewise, given an exponentially distributed random variable,
its PDF is expressed as:

Fi (s) =

∫ s

0

λe−λudu = 1− e−λs (14)

λ, which is the inverse of the mean of the random variable, is
called the rate of the process. When the noise PDF is uniformly
distributed, Equation 8 yields:

F (s) = 1− (1− s)n (15)

1) min: Uniform Distribution: With the statistics of the in-
dividual nanosensors in place, the min operation yields an
aggregated PDF of (using Equation 8):

F (s) = 1− (1− s)n (16)

The corresponding density function is:

f (s) =
d

ds
F (s) = n (1− s)n−1 (17)

With f(s) in place, we can compute the mean and the variance
of the output of the min operation for the uniform distribution:

E [s] =

∫ 1

0

sf (s) ds = n

∫ 1

0

s(1− s)n−1ds (18)

If we let u = (1− s) and substitute terms we get:

E [s] = n

∫ 1

0

(1− u)un−1du = 1− 1

1 + 1/n
(19)

Note that we started by assuming a normal condition where
there was no gas leak. In which case, the node should produce

no output. So, as we aggregate the outputs of the nanosensors,
the mean approaches zero, unlike the case of the mean of
the individual nanosensors which is 1/2. The variance of s,
σ2
s , is expressed as: E

[
(s− E [s])

2
]
. Alternatively, it can be

expressed as: E
[
s2
]
− (E [s])

2. Taking the latter expression
yields:

σ2
min =

1

1 + 2/n
−
(

1

1 + 1/n

)2

(20)

As can be seen, the variance as a result of data aggregation
approaches zero, which means the confidence associated with
the aggregated statistics is high.

2) min: Exponential Distribution: Similarly, when the noise
is exponentially distributed, Equation 8 yields:

F (s) = 1−
(
1−

(
1− e−λs

))n
= 1− e−λns (21)

The corresponding density function is:

f (s) = λne−λns (22)

Computing for the mean yields E [s] = 1/λn. Here, too,
since the mean operation always favors the minimum value,
as the array size increases, the mean of the aggregation output
approaches zero (as it should be, since we are considering
a normal condition). Similarly, the variance of this output is
given as:

σ2
min =

(
1

λn

)2

(23)

3) max: Here we consider the case when the noise is
uniformly distributed, in which case:

F (s) = sn (24)

The pdf of s is:
f (s) = nsn−1 (25)

The mean of this operation is given as:

E [s] =
1

1 + 1/n
(26)

The max operation favors the maximum value. If the magni-
tude of this value is less than a set threshold, it means that
the possibility of experiencing a false positive is very small.
As in the case of the min operation, here as well the variance
approaches zero as a result of data aggregation:

σ2
max =

1

(n+ 1)2(n+ 2)
(27)

V. NETWORK

To investigate the scope and usefulness of a wireless sensor
network for monitoring toxic gases, we deployed 21 sensor
nodes in an open field next to the Faculty of Computer Science
(TU Dresden). Four of the nodes integrated arrays of ammonia
nanosensors, whereas the rest were used as intermediate nodes
to forward packets. The network had a grid topology and the
ammonia sensors were placed at each of the four corners of
the grid. Furthermore, a base station at one side of the network
interfaced the sensor network with a nearby laptop computer.
The Raspberry Pi boards attached to each of the nodes were
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Fig. 3: The difference in the raw values of nine arbitrarily
selected sensors of an array in the absence of ammonia.

tasked with collecting performance related statistics from the
Zolertia platforms. In addition, they established a local area
network to coordinate the experiments. The sensor nodes
were configured to transmit packets in the 2.4 GHz radio
band using 7 dBm transmission power. Each node transmitted
packets at 1 Hz rate, the packets containing the min, max,
and average values reflecting the observations of the 64 on-
board nanosensors. In all, we conducted 100 independent
experiments to evaluate the performance of the network.

A. Sensing

During our field deployment three of the gas sensors were
not exposed to ammonia, but one of them (Node 2) was placed
next to a bottle (ca. 5 cm away) containing ammonia. The lead
of this bottle was removed for ca. 30 s during each experi-
ment. The experiment took place under normal atmospheric
condition (airflow: ca. 6 L/min, outside temperature: ca. 25◦C,
relative humidity: ca. 25%).

The nanosensors exhibited an appreciable difference in their
zero-offset threshold, but in terms of their precision and
accuracy, they were comparatively similar. Fig. 3 shows the
outputs of nine arbitrarily selected nanosensors from a single
array in the absence of ammonia. It is worth to mention that
even though the dielectrophoretic deposition process was the
same for all the 64 sensors of an array, the difference in their
response was likely due to the presence of small unavoidable
defects at the microelectrodes [17]. This feature remains, by
and large, stable, though, in the presence of ammonia, as can
be seen in Fig. 4.

Fig. 5 illustrates the difference in the raw values between
the min and the max operations of the four nodes during the
monitoring of ammonia for a sampling duration of 200 s. In
each sampling interval a node performs the two operations by
comparing the outputs of all the sixty-four nanosensors. For
reasons we have not yet established, several sensors reported
suspicious outputs which were not included during data ag-
gregation. Except Node 2, all the others were monitoring a
normal condition (the absence of a toxic gas).
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Fig. 4: The difference in the raw values of nine arbitrarily
selected sensors of an array in the presence of ammonia (right).
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Fig. 5: Comparison of raw values of min and max operations.
Except Node 2, the other nodes were not exposed to ammonia.

When regarded separately, the samples of both the min
and max operations show appreciable fluctuations as do the
raw data from the sensors, but the magnitude of fluctuations
tend to disappear when the outputs of the two operations
are compared, as can be seen in Fig. 6, where we plotted
the histograms of the aggregated data. This feature affirms
the theoretical assertion that the variances of both operations
approach zero as the number of sensors increases, regardless
of the statistical characteristics of the outputs of the individual
sensors.

B. Routing

Multi-hop Routing is supported in two steps. In the first step,
the topology of the network is established and represented
by a binary adjacency matrix. How this is accomplished is
explained in detail in [25]. As a summary, in this step, nodes
discover and keep a list of their neighbours (including their
hop-distance). For the size of our network, this step takes ca.
1.6 s.

Avoiding congestion and minimising packet loss is critical
for toxic gas detection. To achieve these goals, firstly, a node
uses unicast communication to send a packet to exactly one
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Fig. 6: Comparison of the histograms of the min and max
operations. Only Node 2 was exposed to ammonia.

neighbour which is at least one-hop nearer to the sink. This
takes place as long as packets are duly acknowledged. If a
packet is lost, a node attempts to retransmit it twice; if both
attempts fail, then it broadcasts the packet to all its neighbours
and any receiving node, provided it is either the same hop-
count away from the sink as the transmitter or at least one
hop nearer to the sink, forwards this packet. Secondly, nodes
perform local comparison before they decide to include a piece
of data in a packet they transmit. The comparison consists
of (i) freshly received values from neighbours, (ii) freshly
computed local values, and (iii) values from the previous
round. If the new min is not less than the min from the previous
round, the node does not forward it. If, however, a new min
is observed, then this will be transmitted along with the ID of
the node which reports it. In addition, the node locally stores
this value, regardless of where it originated. The same is true
for the max and the average values. Algorithm 1 summarises
this process for the min and max operations. An exception
to this rule is an emergency situation. An emergency situation
is flagged when a node locally detects that a concentration
threshold is crossed, in which case the packet is directly
forwarded towards the sink.

Local comparisons take place at 1 s interval. The short-
range radio supported by the CC2538 System-On-Chip has a
nominal transmission rate of 250 Kbps, but it rarely achieves
this rate. If we assume a modest transmission rate of 100 kbps,
the transmitter needs ca. 2.5 ms to transmit a packet of 28 bytes
(the longest packet containing a min, max, and average values).
If neighbours require on average 10 ms to win the medium
– in the Time Slotted Channel Hopping (TSCH) protocol, the
timeslot for the Zolertia platform is set 10 ms [26] –, then an
intermediate node can collect up to 80 packets during the 1 s
interval. In other words, the interval is long enough to collect
packets from neighbours.

C. Link Quality

The quality of wireless links varies appreciably. We ob-
served this phenomenon in different ways. Firstly, we mea-
sured the background noise at each node both before a packet

Algorithm 1: Processing min and max
Input : Received packets, local min, local max, past

min, past max: p, lm, lx, mτ−1, xτ−1

Output: Transmitted packet: ptx
Aggregate min:

mτ ←min (lm,p.m)
if mτ < mτ−1 then

mτ−1 ← mτ

ptx.m← mτ

else
ptx.m← NULL

end
end
Aggregate max:

xτ ←max (lx,p.x)
if xτ > xτ−1 then

xτ−1 ← xτ
ptx.x← xτ

else
ptx.x← NULL

end
end

was transmitted and after a packet was received. Secondly,
we measured the RSSI values of incoming ACK packets.
Thirdly, we evaluated the statistics of successively received
and lost packets to examine short-term link quality fluctua-
tions. Fourthly, we compared the total number of packets a
node successfully received with the total number of packets
transmitted to the same node to determine long-term link
quality fluctuations.

The IEEE 802.15.4 specification [27] defines a total of 16
channels in the 2.4 GHz band (numbered from 11 to 26). Each
channel has a bandwidth of 2 MHz and is separated from
neighbouring channels by a guard-band of 5 MHz. Some of
these channels overlap with other ISM band channels and can
be affected by nearby ISM networks (such as the LAN we
established to monitor our experiments and other nearby WiFi
networks) [28]. Therefore, not all channels are equally affected
by surrounding noise and interference [29].

The background noise at the four gas sensors remained, by
and large, stable in all the 16 available channels throughout our
experiments. Fig. 7 displays the histogram of the background
noise for Channel 25, which was the best for our setting. More
than 95% of the time, it was below -90 dBm. Experiment
results reveal that the Zolertia platform is capable of receiving
a packet successfully if the RSSI value is above -90 dBm
[30]. Consequently, the packet loss our network suffered was
mainly due to packet collision or interference coming from
other sources.

The packet success rate depends on the network traffic den-
sity and the surrounding cross technology interference (CTI).
In this regard, we observed that the 16 available channels
experienced different packet losses. To demonstrate this aspect,
we flew an Unmanned Aerial Vehicle (UAV) during three of
our experiments while the ground nodes transferred packets
to the base station. Fig. 8 displays the performance of three
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Fig. 7: The statistics of the background noise as perceived
by the four sensor nodes integrating the arrays of gas sensors
(Channel 25).
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Fig. 8: Comparison of the total number of packets transmitted
and the total number of packets received by the base station.
The transmitters were the four nodes integrating the ammonia
sensor arrays. The two nodes farthest away from the base
station were each four-hop away and the two nodes nearest
to the base station were each two-hop away. Top: Channel 25.
Middle: Channel 26. Bottom: Channel 24.

adjacent channels (Channels 24, 25, and 26). The statistics we
used to generate the histograms were based on the transfer
of 2000 packets. As can be seen, Channel 25 performed best
with more than 95% of the packets transferred successfully
over the multihop links. The other channels, however, suffered
a considerable packet loss on account of the CTI generated by
the remote controller of the UAV.

D. End-to-End Latency
In order to measure the response time of the system, we set

up a threshold of 40% relative resistance change (correspond-
ing to ca. 5 ppm of ammonia) to trigger an alarm. Each node
first aggregated the data from the sensors and then transmitted
the result at 1 Hz rate. The system’s response time consists of
(1) the packet transmission end-to-end latency (which depends
on the relative distance of the nodes from the base station) and
(2) the time at which the nodes detect an interesting event.

Δ
R

/R
0

 (
%

)

time (s)

Fig. 9: Averaged sensing response (∆R/R0) of the gas sensor
array upon exposure to ammonia gas.

20 U. Aßmann et al.

robot arms with the immersion control system. This is necessary for collision
detection when several arms are controlled simultaneously. With this configura-
tion we are now able to simulate the immersive control system under development
without having to adapt the simulation.

4 Experiments with the IRC Fog Services

To evaluate the feasibility of the Sniffbot innovations and the approach in
general, we experimented with the service architecture after deploying the IRC
on an open field (Fig. 3 right).

4.1 Sniffing with a Big Nose

The current implementation of Sniffbot consists of the Warthog robot (Fig. 3
left), a WSN with sensor nodes with arrays of high sensitive Ammonia nano-
sensors, and a Positioning Network. The WSN is able to achieve a high degree
of spatio-temporal sensing, whereas the mobile robot sniffs dangerous gases in
its immediate environment. The Positioning Network analyses data according to
its deployment and identifies a PoI. Also, it coordinates with the mobile robot
to navigate to the region of interest.

The WSN consists of 5 Zolertia RE-Mote revision B motes9, forming a rect-
angular topology with one of the sensor nodes deployed at the center of the
rectangle. To each sensor node, a 64-channel Ammonia nano-sensor is connected
via a serial communication bus (Fig. 7). The sensor nodes are powered by a power
bank and sample their environment at a rate 1 Hz. The node in the middle of the
field serves as a gateway between the sensor network and the PoI Calculating
Service using the MQTT protocol [22] over a WiFi link.

Fig. 12. Left: Samples of NH3 measurements. Right: The end-to-end communication
latency of the wireless sensor network.

9 https://zolertia.io/product/re-mote/.

Fig. 10: The average end-to-end packet transmission latency
of the four sensor nodes integrating the gas sensor arrays.
The statistics were generated based on the reception of 2000
packets. The two left bars correspond to the nodes which were
4-hop away from the base station, whereas the two right bars
correspond to the nodes which were 2-hop away from the base
station.

Since we exposed only one of the nodes (Node 2, which was
2-hop away) to a concentration of ammonia due to safety
concerns, we have to evaluate these two aspects separately.
Fig. 9 shows the response of Node 2 to the concentration of
ammonia to which it was exposed. (In plotting the response
time of the nanosensor, we included a portion of raw data
published elsewhere [31]. In the previous publication the
focus was on the overall response time of a system involving
a UAV, a mobile robot, a wireless sensor network, and a
middleware. The size of the network was significantly smaller
compared to the present case (5 vs 21) and the performance
of the network was not analysed in detail. However, since the
sensors’ response time is independent of the network size or
structure, including the response time of multiple experiments
increases the statistical significance of the whole data.). The
node needed ca. 100 s to cross the set threshold (based on the
expected value of the min operation, as discussed in Sec. IV-
B)6. Compared to commercially available ammonia sensors
based on electrical readouts (a response time of ca. 2 to 3
min for 25-30 ppm concentration [32]), the response time

6We suspect that the actual response time of the sensor is smaller, but
imperfect experimental conditions might have led to this observation.



DARGIE ET AL.: MONITORING TOXIC GASES USING NANOTECHNOLOGY AND WIRELESS SENSOR NETWORKS (MAY 2022) 9

is significantly small. Recently, Maity et al. [33] reported a
paper electronics based solid state ammonia sensor with a
response time of ca. 100 s for a sensitivity threshold of 10
ppm, which suggests that a single node responds with a high
level of performance compared to the state of the art.

The average end-to-end communication delay for Node 2
was ca. 530 ms. Node 1, which was the same hop-away from
the base station, experienced approximately the same average
end-to-end latency. The other farther away nodes, Node 3
and Node 4, experienced an end-to-end latency of ca. 650
ms on average. Fig. 10 shows the box plot of the end-to-end
communication latency for the 4 nodes. The green dash lines
in the middle represent the mean value and the orange lines,
the median.

VI. EVALUATION

In Section II we demonstrated a wide range of applications
that can be supported by wireless sensor networks monitoring
dangerous or toxic gases. To evaluate the performance of our
network we adopted the approaches used by Perez et al. [14]
and Cheung et al. [8], in that we tested the reliability of the
network in terms of (1) packet loss and end-to-end latency
and (2) the response time of the entire system in the presence
of a perceived danger. Packet loss and end-to-end latency are
not aspects of the gas sensors and can be tested without the
need to expose them to a concentration of a gas. The system’s
response, however, requires exposing the system to an actual
concentration of a gas.

A. Packet Loss
Our experience with packet loss is similar to that of Perez

et al. and Cheung et al. The difference is that they did not
evaluate the performance of all the available channels, whereas
we evaluated all the available channels. As we demonstrated in
Fig. 8, the link quality was not the same for all the channels.
Since the IEEE 802.15.4 communication band overlaps with
other ISM bands, such as the ones used by wireless local area
networks, the possibility of experiencing interference in the
lower-end of the spectrum is high. As a result, in the literature
Channel 26 is often favored for wireless sensor networks [34]–
[36]. Our experience, however, suggests that this channel, too,
can be affected by a strong cross technology interference. In
all our experiments Channel 25 was the best. This suggests
that dynamic channel selection is required to achieve the best
performance.

B. Latency
Perez et al. achieved an end-to-end latency of 30 to 40

ms. Compared to what we achieved (ca. 530 to 650 ms),
their performance appears to be impressive. But we need
to carefully examine the deployment settings. Their network
consisted only of 7 nodes, whereas ours consisted of 21 nodes.
Secondly, they sampled the network at 1 m interval, whereas
we sampled ours at 1 s interval. Therefore, the data traffic
in the network for our case was considerably higher than
theirs. This explains the relatively large amount of delay we
experienced.
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Fig. 11: The average number of packets intermediate nodes
transmit in 1000 s. Red: Nodes transmit packets regularly at
1 Hz rate. Blue: Packet forwarding is event-based.

Similarly, Cheung et al. reported a system response time
of 1-2 s, while the system response time for our case (the
summation of the end-to-end latency and the time the node
needed to detect the presence of ammonia) is ca. 101 s. The
difference is considerable. One of the reasons for this is the
difference in the network size. The network of Cheung et al.
consisted of only 5 nodes and only one node communicated
at a time. Moreover, our data aggregation strategy is more
reliable, because Cheung et al. relied on a snapshot query (a
single sample sufficed to fire an alarm), which is unreliable
and liable to false positives an false negatives.

Having said this, the overall latency we experienced is
well above the 60 s upper limit many chemical industries
recommend to fire an alarm. Compared to the response time
of the nanosensors, the contributions of the communication
latency and the data aggregation are negligible (100 s vs. < 1s
). This means that the response time of the nanosensors needs
improvement and we are currently working on this aspect. This
said, recently, we tailored the CNT surface towards selective
sensing of hydrogen sulphide, achieving a response time below
the required threshold of 60 s [17].

C. Packet Forwarding
Another aspect we investigate is the packet forwarding task

of intermediate nodes. Assuming a child node communicates
exactly with one parent node, in a regular routing protocol,
a node d-hops away from the sink receives ca. (dmax − d)p
packets and forwards (dmax − d + 1)p packets in a single
round (where dmax is the farthest hop in the grid and p is the
size of an ordinary data packet). These figures suggest that
the packet transmission cost of the intermediate nodes near
the sink increases linearly. For our case, packet forwarding
is event-based. Furthermore, the evaluation of events occurs
at two stages: locally and at an intermediate node, which
significantly reduces the number of packets an intermediate
node forwards to the sink. Fig. 11 compares the number of
packets intermediate nodes forward on average in the two
scenarios. The result was obtained analytically; the probability
of events is taken to be exponentially distributed.
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VII. CONCLUSION

In this paper we proposed a wireless sensor network for
monitoring toxic gases. We developed arrays of nanosensors
for monitoring ammonia and integrated them into wireless
sensor nodes having communication, processing, and power
subsystems.

We carried out a field deployment with a network of 21
sensor nodes. The network was forming a grid topology. The
network was tasked with monitoring ammonia and the nodes
were sampled at 1 Hz rate. The outputs of the arrays of sensors
were locally aggregated using min and max operations and
the packets were transferred to a central base station using
multihop communications. Four of the 21 nodes integrated
arrays of nanosensors, whereas the rest were employed as
intermediate nodes. The four nodes with the ammonia sensors
were placed at the four corners of the grid. We placed a bottle
containing ammonia next to one of the nodes and removed
the lid for ca. 30 s in each experiment. We set a 40% change
in the total resistance of the nanosensors as the threshold to
detect a concentration of ammonia which is large enough to
trigger an alarm. The node required approximately 100 s to
reach at a decision and trigger an alarm. We needed additional
700 ms to transfer a packet to the central station. Overall, with
the selection of the best channel, the packet error rate of the
network was below 5%.

Our future aim is to minimize the system’s response time
which, at presence, is higher than the limit prescribed by many
chemical industries (which is 60 s).
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