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Abstract above0 and belowl andF andB regions have only val-
ues which are exactly andl respectively. The information
We present a new approach to the matting problem which from the known regions (F, B) is used to predict for each un-
splits the task into two steps: interactive trimap extranti ~ known pixel the values foF; B and . It has been shown
followed by trimap-based alpha matting. By doing so we [21], and we will con rm it, that if the trimap is perfect (or
gain considerably in terms of speed and quality and are able nearly perfect), the resulting matte is of very high quality
to deal with high resolution images. This paper has three The recent soft scissors approach][is probably the most
contributions: (i) a new trimap segmentation method using sophisticated trimap “paint tool”. It builds on the intglint
parametric max- ow; (ii) an alpha matting technique for scissors approach ] which gives a hard segmentation, i.e.
high resolution images with a new gradient preserving prior only F,B labels. In soft scissors the user traces the boyndar
on alpha; (iii) a database 027 ground truth alpha mattes  with a “fat brush”. The brush size is adapted according to
of still objects, which is considerably larger than prevsou the underlying data and intermediate results of the magte ar
databases and also of higher quality. The database is usedshown, enhancing the user experience. The main drawback
to train our system and to validate that both our trimap ex- of such a brush tool is that objects with a long boundary
traction and our matting method improve on state-of-the-ar or complicated boundary topology are very tedious to trace,
techniques. e.g. atree with many foreground holes or the example in g.
1(left).

Mainly due to this drawback, the trend of hard segmen-
Natural image matting addresses the problem of extract-tation has been to move froboundaryselection tools like
ing an object from its background by recovering the opacity intelligent scissors 3] to scribble-basedegion selection
and foreground color of each pixel. Formally, the observed tools [2, 15]. This second class of interfaces is more user-
color C is a combination of foreground (F) and background friendly since only a few pixels have to be assigned to F or
(B) colors: B, which are ideally far away from the boundary. Impres-
C=F +(1 )B @) sive results were achieved for hard segmentation p, 1]
interpolated by the opacity value (This simplied model ~ and also to some extent for matting PO, 11, 5]. Note, a
will be reconsidered later). Matting is a highly under- Simple approach to obtain a soft matte from a hard segmen-
constrained problem and hence user interaction is eskentiatation is to run existing trimap-based matting techniques i
In this introduction we will rst consider the user aspects @ band of constant width around the hard segmentation, as
of the matting problem and then compare the different mat- done in e.g. 15, 1]. In contrast to this, our work computes
ting approaches themselves. Previous work in this domainanadaptiveband which respects the underlying data.

can be broadly classi ed into three types of user interfaces  \we now review scribble-based matting methods. In

The _rst class of inte_rface i; based on trimaps {6, 21, [9, 11] a pure local “propagation” approach is taken and
19, 4]. Firstthe user paints a trimap by hand as accurately asyq giobal color information (i.e. outside a small window) is
possible, i.e. each pixel is assigned to one of three classes;ge(q. |f the assumption holds that all colors within a small
foreground (F), backgroupd (B)_ or unknown (U_) (6.9- 9- window around any unknown pixel lie on a line in color
1(middle)). In a perfectly tight trimap the valuesinU are  gpace then this approach obtains the ground truth matte. We

This work was supported in part by Microsoft Research Cangerid ~ OPbserved in our experiment_s that this approach obtaips good
through its PhD Scholarship Programme and a travel spongorshi results for relatively tight trimaps (or scribbles), bupér-
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Figure 1.Our interactive matting framework. Given an input image (left) the user interactively creates a trimap (midéiem the
trimap an matte (right) is computed, rst in low and then in high resolution, together wiéhtthe fore- and background colors. The
user interactions consist of three types of brushes (F-foregraed)i B-background (blue), and U-unknown (green)) and a sfatethe
trimap size (interactive due to the recently developed parametric max clwntque p]). We believe that this approach has several bene ts
over existing ones: Speed, quality, and user friendliness (see tedetais).

Figure 2.Comparison of scribble-based matting approachegésee text for discussion). Scribbles are marked in either red (fgtiplae
(bkg) or white (fgd) and black (bkg). Our result was achieved with glsibounding box selection, inspired b4, and one additional
background brush stroke. Note, our approach can also handlecmalienging mattes, e.g. gl. All results we show were either taken
from the original papers or created with the original implementation of thegeive authors.

forms quite poorly on sparse scribble inputs. An example is ity compared to the approaches above. While the user cre-
shown in g. 2(a) and g. 7 in [9], where even relatively  ates the trimap, a preview of the matte is computed (lg.
tight scribbles cause problems. A plausible explanation isright) and shown to the user. But even before a preview is
that global color models do help considerably to overcome available, the user can interactively adjust the trimap and
local ambiguities. In contrast?(), 5] use both global color  remove obvious mistakes in order to simplify the matting
models and local propagation. IA(] an iterative approach  task. In this process all images are scaled down to typi-
is suggested where a global color model is used only for cally 0:3 Mpix. In a nal step a high resolution matte, e.g.
pixels with low con dence. In}] the global color model of 6 Mpix, is computed, which in our case is a slow process. It
the brush strokes is used to reason about all unknown pix-is important to note that in contrast to the multi-resolatio
els (very similarly to P1]). However, evenj0, 5] do not approach for hard segmentatior’], sub-pixel structure is
perform well for the example in g2(b) and g. 5bin [20] captured in the unknown trimap region. Additionally, the
using scribbles. In order to achieve a good result for this ex user has a slider for controlling the trimap size which is in-
ample, previous results have required either many scibble teractive due to parametric max- ové]. The main bene t
[99 (g. 2(c)) or a very tight trimap0] (g. 5ein [ 20)). in speed comes from the fact that in a typical image most
pixels belong solely to either fore- or background. For ¢hes
Recently an intermediate solution has been suggested byixels expensive matting algorithms which recover the full
Juan and Keriven/]: The user interactively creates atrimap range of fractional should not be invoked. For example,
using a scribble-based interface (see 1. In our work we for a typical small resolution imag&®:3 Mpix), [20] and
use the same approach since we believe it to be an intu{9] have reported a runtime of aboB6sec [5] of about
itive interface and it has an advantage in speed and qual-



Figure 3.Unary terms for trimap segmentation. (a) Input image with user scribbles (red-foreground, blue-baxkyd). (b) Unary
energy for the sub-blur kernel structure term and (c) color termk Dalicates low energy and white high energy. (d) Pixels in a small
band around th& % B ° transition of GrabCut{5] (green line) are classi ed into physically sharp boundary pixels inditateoright red
(the image was darkened for better visibility). The class prior is not visekince it is constant over the whole image.

200seq and we achieve with a tight trimap a runtime of energy for all5 labels:F; F % B; B % U. It has the main ad-
3:5sec using 71]. Moreover, not only speed but also the vantage that the transitioRr® B° is modelled to coincide
quality of the matte is improved, as shown in g(d). Our with an image edge (as i [15]) whereas other transitions,
advantage over scribbled-based systems ahi [that we e.g.B; U, are not data dependent (e.g. Potts modelJh [
exploit the result of a hard segmentation system such@ds|[ However, instead of optimizing an energy for &llabels,
to build better global color models, and to detect and model we employ a 2 step process that allows a more expressive
physically sharp boundaries. Furthermore, we use our largemodel and higher speed. First, we obtain a hard binary seg-
ground truth dataset to build a classi er for potential tsipn ~ mentation into the ses° andB °using GrabCut{5]. The
pixels, and to train parameters of our energy (in particular energy and parameter settings are as de ned ihdnd the
we learned a predictor for the trimap size interested reader is refereed to the respective paper for de
For the second task of trimap-based alpha matting wetails. Following the hard binary segmentation we compute
concentrate on two challenges, which we believe have nota trimap segmentation with labefls B andU (sec. 2.1).
yet been solved: (i) working with high resolution images The energy function considers several image cues, and four
and (ii) nding a good prior for . The novel ideas are different types of priors are used to regularize the resit (
an edge-preserving sparsity prior forand the use of the sualized in g. 3). We show that the trimap segmentation
camera’s point spread function to model most fractional ~can be formulated as a binary classi cation problem and
values in high resolution images. minimized with graph cut. Finally, in sec2.2, we show
Finally, using our new ground truth database we are ablehow to learn the parameters for trimap segmentation from a
to show that we Outperform both existing trimap creation training data set. Please note that in this section we assume
approaches and trimap-based matting methods. the image to be of a small size, typicalyd Mpix.

The paper is organized as follows. Sect®rexplains 2.1. Trimap Segmentation - Model
our trimap extraction method, and secti@rthe trimap-

based matting approach, and nally sectibimtroduces our In this step all pixels will be assigned to' one of the three

database and describes experiments. labelsF; B or U. We assume that each pixel has been al-
ready classi ed intoF © or B® using GrabCut [5]. Since

2. Interactive Trimap Segmentation F F%andB BPabinaryclassi cation into two labels

U andU is suf cient, whereU = F [ B. (Each pixel inU
In the following we extend the approach of Juan and is uniquely speci ed to be in eithef or B givenF%BP°)

Keriven [7/]. We denote the color of pixal asc, its la- Note that has to be just fractionalo(< < 1) at the
bel asx;, and its value as ;. Let| be the set of all boundary of the hard segmentation (F' to B' transition) and
pixels. Formally, the three subsétsB andU (see g. 1) not necessarily exactly.5.

aredenedas8 = fij < g, F =fij y>1 gand We de ne the binary energk for the trimap extraction as:
U = In(F [ B), where we choose= 2. (For simplicity, X
sets and labels have the same name, e.g. F.) We also intro- E(x; )= b\/ijb(xi;xj )+ ViE(Xisxg)
duce two extra subseB%B°whereB® = fij ;  0:5g (i )2N
andF%= fij ; > 0:59. The transition fronF°to B%is . b s
the 0:5 level-line of a hard segmentation. Obviously, it is UF(xi) + UPOx) + wlP0x) + s(UP00) = (2)
F F%B BlandF°[ B°=F[ B[ U=1I.

In [7], an energy for the three labdfsB; U was de ned whereN is the set of neighboring pixel8{neighborhood),
and optimized globally. Ideally we would like to de ne an and comprises of all model parameters. The energy can



be locally optimized using graph cuif] or parametric Iter should be low and at the same time the magnitude of
max ow [ 8] depending on the choice of the free parame- the derivatives of the tws=2 sized lters, shifted bys=2,
ters during test time (see below). The individual terms are should be high, whers is 2x the size of the blur kernel.

de ned as follows. Note that by choosing different values ferwe can cope
Color (c) The color unary term for pixel; 2 U is with sub-pixel structure, discretization, and interferemf
modeled adJ®(x;) = logP(cj oF ) if x; = F© and close-by thin structures. We con rmed experimentally that
US(xi) = logP(cj es) if xi = B® Here gr and g s = 5 gives the lowest error rate (area under ROC curve)
are the Gaussian Mixture Models (GMM) of fore- and back- over the training set.

ground respectively (see sec2for computational details). Formally, we usenax(0;ja b+jb ¢ j a cj),where

In the unknown region the color distribution OF (x;) with a; b; care the left, center and right pixel values on a line seg-

Xi 2 U is represented by a third GMMgy by blending ment of lengttb. We made this (symmetric) detector orien-
all combinations of fore- and background mixtures of the tation independent by taking the maximum response over
respective GMMs as in/] (see example in g3(c)). Moti- four discrete angle$0°;45°%;90°;135°). All three color
vated by P7], and in contrast to], the distribution of the  channels were weighted equally. A further improvement
blending coef cients is modeled as beta distribution whose was achieved by setting those Iter response®twhere

two free parameters were derived (@s25; 0:25) from our not all pixels on the line segment were assigned to the same
training set of ground truth alpha mattes (see ggc. mixture in the GMM gy . The underlying assumption is
Class prior (p) The probability of a pixel belonging to the that in a small window the true fore- and background colors
classU or U is image dependent. For instance, an image are similar. We de neJS as the lter response. Fig(b)
where the foreground object has been tightly cropped has alepicts a result for the image in @(a). It even works well
different proportion ofU versusU pixels than the original  for complicated interference patterns, e.g. many thin-over
image. We model this ratio by an unary term as: lapping hairs. As desired, it also has a lower response at

o sharp boundaries and inside the tRu@ndB areas.
Ur(xi)= [xi 6 U]; 3

i.e. alarger gives a larget) region. We show that predict-

ing during test time improves the performance consider-

ably. The learning of the predictor is discussed below (sec.

2.2). Furthermore, the parameteris also exposed to the

user as a slider. Due to the nestedness propé}tgf[the

solutions for all 's, the slider corresponds to the size of

the trimap. Note, the solution of our energy &l 's can

be ef ciently optimized using parametric max ows].

Sub-blur kernel structure (s) There are many different  Figure 4. A1-D example of a thin (top,left) and thick (bottom, left)

reasons for a pixel to have fractionalvalues (i.e. belong  hard boundary (sparse€), which are convolved with the camera’s

to U): Motion blur, optical blur, sub-pixel structure, trans- PSF, which gives (see text for details).

parency, or discretization artifacts. Here we concentrate

optical blur. The goal is to detect thin structures whichéhav Sharp boundary (b) The F% B transition determined by

a width that is smaller than the size of the camera's point GrabCut [L5] often coincides with a clean, physically sharp

spread function (PSF). These structures give rise to frac-boundary. This means that in the vicinity of the detected

tional values but they may not be close to a physically boundary (de ned by the PSF) there is no other boundary

sharp boundary (e.g. the hair in §(b)). transition, hence no sub-blur kernel structure. An example
Consider g. 4 which shows al-D example of a thin isthe body of the objectin g3(d). At such boundaries the

(top,left) and thick (bottom,left) hard boundary (spar$g, width of U is equal to the width of the camera's PSF and

which is eitherO or 1. It is convolved with the camera's  thus is only a few pixels wide. To determine the physically

PSF, here a box lter, which gives. In the bottom case sharp parts of the % B °transition we have designed a sim-

two smooth boundaries appear, i.e. somalues remair, ple classi er to detect whether the hard segmentafi&rB °

which ideally should be detected by the hard segmentationcorresponds to a sharp boundary. We rst run a matting al-

(and then handled by the sharp boundary term). We wantgorithm [9] in a small band (twice the size of the blur kernel,

to build a detector for the top case where the thin structurecentered on th& % B transition), which is very ef cient.

is smaller than the size of the blur kernel. We have exper- Then a pixeli in this band belongs to a sharp boundary if

imented with many different rst and second order deriva- the following conditions hold for a small window; (twice

tive Iters and found the following to work best. Roughly larger than the blur kernel) centerediona) the average

speaking, the magnitude of the rst derivative okasize insideW; is 0:5; b) half of the pixels inV; are abové®:5; c)



at least half of the pixels ikV; are close t® or 1 (rejecting This is motivated by the fact that a missed unknown (U)
smooth boundaries). Note that these conditions tolerate gixel in the trimap camot be recovered during alpha mat-
shift of the boundary by half the size of the blur kernel. The ting. We see in sec4 that it is indeed correlated to the

classi cation error on our training set £9:3%. Stronger

error for matting. Based on our training datase®6fim-

conditions, which are computational more expensive could ages (see seel) we have hand tuned all the parameters in

be considered in the future.

Figure 5. Sharp boundary boundary terms (see text for details).

The result of this classi er is used to model the bound-
ary termsUP andVP®. Consider g.5, which illustrates an
in-focus region of a physically sharp boundary in a low res-
olution matte. The red line is the result of the hard seg-
mentation F % B transition). We force all pixels adjacent
to the F% B0 boundary to be iflJ using hard constraints
for UP (green pixels in g.5). Also some pixels, which are
neighbors of green pixels, are forced to beJifusing hard
constraints folJp). These are those pixels which are close
to a physically sharp boundary and are shown in red in g.
5. Intuitively, these pixels form a barrier, which prevents

U from leaking out at sharp boundaries. The pairwise term

VP is shown as a blue line in ¢5. It forms an 8-connected
path which follows tightly the green pixels. Intuitively, i

, except of those discussed belowf t@; w; s; s0; rg=
f2;40; 1; 2;0:1g.

We have observed that the initialization of the color mod-
els gr; es israther crucial, and was not discussedih [
The reason is that the energy has typically many local min-
ima with a high error since e.g. a tr&ecolor can be mod-
eled as the blend of a trg color with another tru€& . Sur-
prisingly, even making the GMMs spatially dependent did
not help to overcome these local minima. After initializa-
tion, the color models can be updated iteratively asli.[
However, it is not guaranteed that the energy decreases due
to the mixture terntJ¢(U), and therefore we build the color
models from a guessed trimap (see below), and do not iter-
ate.
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Figure 6. Visualizing the correlation betweerand the size of the
U region (see text for details).

enforces smoothness of this barrier. This means that it can

close small gaps where our sharp boundary detector mis-

classi ed theF % B transition.
Smoothness (sJrollowing [15] the smoothness term is de-
ned as

(Xi = Xj) 2

S(x ) )= o — A o :

Vi (Xi3 %) dsti]) exp kg gk ; (4)
where is the Kronecker delta, is as in [L5] and , is

de ned below. As we show in sec4, it nicely preserves
thin structures, e.g. hair, inside the unknown region.

We also enforce the&) region to be4-connected, which
is true for98:6% of the pixels in the ground truth database.
Since enforcing connectivity is NP-hardd], we do it by

As discussed above, (eq. 3) corresponds to the size
of the regionU. Fig. 6 shows, in blue dots, the optimal

wrt to the size of regiorJ of our training set. We see a
strong correlation. To exploit this, we have built a preglict
for the size ofU (see below). The red dots in ¢ show

the predicted values of our training data, and the red line is
a quadratic function3 parameters) tted to them. We see
that the red(predicted) and blue(true) points are close-by
During test time the size df is predicted, given the test
image, and the quadratic function provides the correspond-
ing . Note, in practice is predicted after the rst twd-
andB brush strokes and not changed afterwards, i.e. we do
not alter our energy during the optimization. The dashed

a simple post-processing step. This means that all discondine in g. 6 shows the optimal average = 2:3 which is

nected islands df) are detected and removed.

2.2. Trimap Segmentation - Training

For training we have used the following heuristic error
(loss) function, which counts false [gegatives twice com-
pared to false positiveserror = %0 . 2[xiue = Yy~
X; 8 U]+[x""® 8 U~ x; = U], wherex'™® is the label-
ing of the ground truth trimap ana the number of pixels.

independentf the size ofU. It performs less well as we
see in sec4.

Finally, we use the following heuristic to guess the initial
trimap. We use the data terrf; Us, that are available at
this point, and nd the globally optimal trimap by simple
thresholding the unary energy. Note, 10f we initialize

cF and gg with gpoand ggoasin[/]. On our training
image set we have obtained an average prediction error for



U of 1:5% relative to the image size.
3. High Resolution Alpha Matting

Given a trimap we describe now our approach to matting.
We base it on the method of War& Cohen P1] which
was shown to produce state-of-the-art results from trimaps
They rst obtain a pixel-wise estimation of from high
con dence color samples collected from the fore- and back-
ground regions of the trimap. This estimation is translated
into two data term®Vg andWpg which are combined with

a pairwise smoothness term and solved using random walk
(see 1] for a more detailed description). In our implemen-
tation, we use the matting laplaciarof [9] as a smoothness
term for the matting, as it has a better theoretical justi ca
tion, giving the following objective function:

J()= ( ®)

where is treated as a column vectW/r ; Wg are written

as diagonal matrices and is the relative weighting of the
data versus the smoothness terms (we use 10 2). This
objective function is minimized by solving a set of sparse
linear equations, subject to the input constraints.

Fig. 7(d) shows the result of this process for the input
in (a), which is a crop of &:6Mpix image of hair. The re-
sult looks too blurry compared to the ground truth in‘(c)
Note, the result of applying9] directly, i.e. omitting the
data termaVNg ; Wg, gives a clearly inferior result. It was
shown in [L1] that an additional sparsity prior, i.e. push-
ing towardsO or 1, can solve some ambiguities in the
estimation of . However, [L1] employs a simpleixel in-
dependenprior, and also the prior turns e.into a com-
plicated non-linear system. Thresholding the initig{ g.
7(f)) demonstrates the problem (loss of hair structure) ef us
ing a pixel independent prior on the blurry alpha. The result
of [11]in g. 7(g) is pretty poor. Additionally, inT1] mat-
ting was performed on low res images where even less
sparse then in high res (compare g(b) and (c)).

In this work we suggest a novel sparsity prior. It is based

Lo+ DTWE( D+ TWs

boundary is in-focus, i.e. we model the PSF of the in-focus
area. Note, even in-focus pixels are slightly blurred due to
imperfect camera optics. Note, Jig fomputesK and *
for motion blurred images given by applying the method
of [9]. In our work the “loop” is closed by improving
using S as a prior. We show that this works well for still
images, and our framework is general enough to deal with
motion blurred images, which we leave for future work.
Starting with the high resolution we apply the fol-
lowing steps: (a) Initialize the PSF, (b) Deblurto obtain
sparse ® using the PSF, (c) Estimate a binary sparse alpha
b from S while preserving edges, (d) lterate (a-c) a few
times, (e) Convolve the binary*® with the PSF and use it
to re-estimate .2 Intermediate results of the process are in
g. 7 (i-1). Each step is now described in detail:
Estimating the PSF.We model the PSF as a symmetric ker-
nelK of size9 9 with non-negative elements which sum
up tol. Motivated by [] we use the following heuristic to
initialize K. For all pixels inU we compute those which
may belong to a physically sharp boundary (s&@). If the
acceptance rate is abo%0%, we obtainK by minimizing
the linear systerjj) ( > 0:5) K Jii?. Otherwise, are-
liable initialization ofK for the in-focus area is a Gaussian
[14] (we use = 1:5). After the rst iteration, the linear
system is solved again using all in-focus pixels (see below)
where ( > 0:5)is replaced by .
Alpha Debluring and Binarization. To get the sparse al-
pha s from andK we use the image-debluring imple-
mentation of (] (see g. 7(i)). From * we construct the
binary sparse alphas® as follows. We observed that ap-
plying a per-pixel sparsity such as thresholdirfigremoves
many features, such as hair, from the matte. A much better
binarization can be obtained by preserving the edges of
(9. 7()). To achieve this, we use the following MRF, and
solve it with graph cut (since E is submodular):

E( sb): P : Ui( isb)_|_ sh. sbh

[

); (6)

where S° is a binary labeling andN denotes an8-

1 fij g2N Vi

on a model of the imaging process, where the observed highconnected neighborhood. The tertdsandVj are given

resolution is the result of blurring the true sparse alptta
with the camera's point spread function (PSF). Hence, the
observed hasthe form = K S as proposed ind] for
the case of motion blur, where indicates convolution and
the blur kerneK models the PSF. (Note that this approxi-
mates the real image composting €q) Fig. 7(h) shows

S derived from the ground truth in (c) and our kernel K
(see details below). It is nearly a binary mask apart from
sub-pixel structure, discretization artifacts, objecttiom,

by
Ui (1) j b 2 s
Vi (fi;f) @8 a+ (P O D)

with the constant§ 1; 2; 3) = (5;0:2;0:002). The
data term encourages the labeling to be similarYdqwith

a small preference towards 0). The pair-wise term consists
of both a regular smoothness and an edge-preserving term.
Note that this edge-preserving smoothness is very differ-

i+

(7)

and semi-transparency (such as windows glass). Note, evernt from the standard smoothness. Actually, with the edge-

a hair, as a physical entity, is opaque if the resolutiong hi

preserving term only, the global optimum contains typicall

enough and after deblurring. Here we assume that the objecthin (1-pixel wide) structures.

1The supplementary material shows the result of applying thnad
implementation of21] which gives a more blurry result.

2|n the formulation of [ 1]  can be replaced byS andK , however,
we found it to be experimentally inferior to our approach.



Figure 7. The matting process.(see detailed description in text). The key idea is that our nahatte (I) is derived from the initial matte
of [21] (d) by imposing a new edge-preserving sparsity prior (k), which feeb¢han a simple pixel independent prior (f).

Re-estimating using the Sparsity Prior. By convolving data terms of {1] in full resolution using the entire image

the binary S° with K , we construct a new sparsity prisr since runtime and memory was reasonable.
on the values of (g. 7(k)). This prior is added simply by .
replacing the data terms in e.with the new terms: 4. Experimental results
WR(I)= We (i)+ a5 WR(I)= We(D)+ 41 s): In order to quantitatively compare different interactive

matting techniques two problems have to be addressed: (i)
where 4 =5 is the relative weight of the new prior. The a large ground truth database of high quality is necessary,
nal alpha matte, shown in g.7(l), is less blurry than the  (ii) a metric for evaluating interactive matting systems ha
initial matte in (d). to be derived. In this paper we propose such a new database.
Handling Multiple PSFs. Due to depth variations there For the evaluation task, we follow the simple style of recent
may be more than a single PSF along the object boundarypapers e.g.41] where a few user inputs were simulated.
Ideally, this problem is handled by recovering depth at each We believe that it is important to improve on this procedure,
pixel. In our work, however, we estimate a single PSF and however we leave it as future work.
assume it can describe well all in-focus pixels. The spar- We rst introduce our database and then compare our
sity prior for other pixels is set to 0. First, we compute for approach to state-of-the-art methods.
each pixel the gradient of®, normalized by the range of Ground Truth Database. Recently two small databases
values in a window1 11) around each pixel. Then we Were introducedl, 11]. The database we use is consider-
compute the in-focus mask by thresholding this score (we ably larger and, we believe, of higher quality. The data in
used 0.4). Note that for out-of-focus regions our method [11] is of intermediate quality, probably due to noisen
is equivalent to regular matting methods and therefore can[21] most examples are natural (outdoor) images, which is
overcome multiple PSFs. a very realistic scenario, however the ground trutivas
. . . . created using a variety of matting methods along with ex-
3.1. Multi-Resolution Estimation of the Matte tensive usergassistancye. We belgileve that such egl dataset is

To obtain high quality alpha mattes 6fMpix images biased especially if used, as in our work, for training. We
with reasonable time and memory requirements, we use ahope that in the future our high quality database can also be
multi-resolution framework with three level6:3 Mpix, 1:5 used to learn better priors for alpha, e.g. high order clique
Mpix and6 Mpix. The matte in lower resolutions is used as MRFs, which is along the current trend of training low-level
a week regularization for higher resolutions. At the higher VISion systems e.g. stereo.
resolution, was solved by processing the image in over- ~ Our dataset ha27 mattes obtained in a professional
lapping windows. Using the low resolution matte as regu- Studio environment using triangulation matting/J from
larization has two advantages: (a) it encourages a smootithe RAW sensor data (10.1 Mpix; Canon 1D Mark Ill). The
transition between windows (for that reason, this priorajot  Objects have a variety of hard and soft boundaries and dif-
higher weight along window boundaries), (b) it pushes the ferent boundary lengths, e.g. a tree with many holes (see
solution towards the global optimum, which is essential for 3, the matte of g. 8 in [L1] 42% of true foreground pixels have an
handling non-informative windows. Note, we computed the value below0:98, in our case this occurred only a6 of pixels.




Figure 8.Trainings and test images Our trainings (images in red box) and test images (images in blue btwe)infages are shown at
thumbnail size (original size is approx. 6 Mpix).

g. 8 for an overview). The nal mattes, of average size our approach to six other methods P1, 9, 11, 5, 4]°. Note,
6 Mpix, consists of the cropped out objects. From these with respect toZ0] we only have results for two images, g.
ground truth mattes we derived ground truth trimaps by 9 and2 (see also g. 5 in 20]). However [], to which we
thresholding the matte. compare to, has shown that they slightly outperfofiti.[

To create training and test images we photographed eacihe reason for including matting systems,[9, 11, 5, 4]
object in front of a screen showing natural images as thein this comparison is to show that we gain not only in speed
background. To increase the dif culty of the trainings and but also in quality in terms of the nal matte. The trimap
test cases, we replaced some of the backgrounds with morerror rate was de ned in se@.2 (measured in percentage
challenging, e.g. shaper backgrounds, using the groundwrtimage size), and the error for anmatte is de ned be-
truth alpha and ground truth foreground color. The differ- low. The trimap error for systems which directly produce a
ent background images show a varying degree of dif culty: matte was done by transforming the matte into a trimap. In
color ambiguity of fore- and background and backgrounds order to compute a matte from our trimaps, and thosé]of [
with different degrees of focus. Then the set was split we use our matting approach with low resolution input and
into 10 training and17 test images. To obtaif0 training without sparsity prior (essentially [[]). For this experiment
images,2 different backgrounds were used for each fore- the input was the set of user-de ned scribbles.
ground object. An overview of the trainings and testimages  Qualitative results are in gl1,2, and9, and quantita-
is depicted in g.8. tive results are in tabld. We see that matting systems

Finally, we created for each image a set of potential user[21, 9, 11, 5] are obviously considerably slower. Note,
inputs in the form of scribbles and trimaps. For each image our approach and/[ need for small resolution alpha mat-
we have casually drawn large scribbles that cover all majorting additional3:5sec on average (not reported in taf)e
colors in the image but are not close to the object boundary.Also, we see that our method with optimaltakes on av-
Comparison of Trimap Extraction Methods. We had to erage0:8sec longer to compute all solutions for the range
down-scale oub Mpix images to a size that most competi- 0f 2 (0;5), but obviously it improves the usability of our
tors can handle, which wdk3 Mpix (e.g. 700 560) - the method. Considering error rates, we see a correlation be-

limit of the publicly available system of[*. We compare  tween the trimap- and matte error, which motivates our
heuristically de ned error functions. We see that our sys-

4For [11] we had to even scale down the imagesth5 Mpix. For
comparison, the obtained result was then up-scal@d3xMpix images. 5[21, 9, 11, 5, 4] was the authors implementation and gur own.




tem clearly outperforms all other approaches both in terms
of trimap error and matte errors. Also, predicting in

our system works better than using a xed As expected,
choosing for each image the optimalgives best perfor-
mance. Finally, ground truth trimaps (last row) give by far
the lowest matte errors, which shows that the problem
of good trimap generation is vital for successfuimatting.
Note, the low rate of 1] might be explained by the fact that

it was not designed for a scribble-based interface, but a mat
ting component picking interface. It is not even guaranteed
that the scribbles will be assigned to the correct
Comparison of Trimap-based Matting Methods. We
used the following error function for the matte, which
penalizes more heavily an over-estimation of

100X

rl [1:5 ( ey+0:5 (<

) IRt
I
where '"® isthe true andn the number of pixels itJ.

It has been shown in2[l, 11] that [21, 9] are the best
performing methods for this task. Fitj0 and7 show qual-
itative results of 1, 9, 11] on crops of high resolution im-
ages. Since we were not able to get all competitors working
for our high resolution images, we adapted our method to
simulate: (i) p1], by removing our sparsity prior, and (ii)
[9], by settingWg, Wg to 0 in eq. 5. Quantitative re-
sults for high resolution images are shown in tabfer dif-
ferent trimaps: ground truth, our trimaps (optimaf, and
small(large) trimaps (dilation of the ground truth trimap b
22(44) pixels). We see that we outperform other methods,
more signi cantly for larger trimaps. The improvements
might look small but it is very important to note that our
results are overall considerably less blurry than others (e
g. 10). This visual improvement is, however, not captured
well in our error metric, which motivates new research in
this eld. Table2 also shows that our scribble-based trimaps
are better than large, hand drawn trimaps with a brush of ra-
dius 88 respectively. Note, the mate error in tabléd and
2 can deviate due to differently sized input images. Finally,
in our un-optimized implementation a fullMpix matte
computation takes betwed® 25 minutes depending on
the size of the unknown region.

5. Conclusions

Method av. error | worst 25% | time
Grady etal. '05{] | (24.3,19.8)| (33.6,28.6)| 5
Levinetal. '07 [L1] | (17.9;9.5) | (28.3;17.8)| 20
Guan et al. '06 ] (13.4;9.0) | (22.7;16.5)| 300
Levin et al. '06 ] (11.4;6.9) | (19.0;13.3)| 18
Wang et al. '07 P1] | (11.0;8.4) | (22.5;19.0)| 50
Juan et al. '057T] (7.6;4.6) | (13.8;12.0)| 1.5
Our (xed =2:3) (2.5;:1.2) (4.9;2.3) 1

Our (predict ) (2.3;1.0) (4.5;1.9) 1
Our (optimal ) (2.2;0.7) (4.5;1.5) 1.8
True trimap (0.0;0.4) (0.0;0.8) -

Table 1. Comparison of trimap methods. In brackets is our
trimap error and our matte error (de nition in text). All num-
bers are averaged over all (wo28%) test images. Times are in
seconds and were measured on the same machine (2.2 GHz).

Method Large | Small | Our | True

Our impl. Levin '06[9] 15 1.2 | 1.3 | 0.71
Our impl. Wang '07[21] 1.7 1.0 | 1.0 | 0.68
Ours 1.3 0.8 | 0.9 | 0.67

Table 2. Comparison of trimap-based matting methods.The
average error over all test images for different trimaps (see text).

while preserving gradients. In the future we hope to ob-
tain even better results by modeling a spatially varying blu
kernel of the cameras' PSF in order to compensate for depth
variations and spatially varying motion blur.
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