
Graph cut based image segmentation with connectivity priors

Sara Vicente� Vladimir Kolmogorov
University College London

f s.vicente,vnk g@adastral.ucl.ac.uk

Carsten Rother
Microsoft Research Cambridge

carrot@microsoft.com

Abstract

Graph cut is a popular technique for interactive image
segmentation. However, it has certain shortcomings. In
particular, graph cut has problems with segmenting thin
elongated objects due to the “shrinking bias”. To overcome
this problem, we propose to impose an additional connectiv-
ity prior, which is a very natural assumption about objects.
We formulate several versions of the connectivity constraint
and show that the corresponding optimization problems are
all NP-hard.

For some of these versions we propose two optimization
algorithms: (i) a practical heuristic technique which we call
DijkstraGC, and (ii) a slow method based on problem de-
composition which provides a lower bound on the problem.
We use the second technique to verify that for some practi-
cal examples DijkstraGC is able to �nd the global minimum.

1. Introduction
The task of interactive image segmentation has attracted

a signi�cant attention in recent years [10, 3, 18, 6, 24, 21].
The ultimate goal is to extract an object with as few user in-
teractions as possible. It is widely accepted that some prior
on segmentations is needed for achieving this goal. Dif-
ferent priors have a preference towards different types of
shapes, as we discuss next.
Graph cut A very popular approach, which we also use
in this paper, is based on graph cut [7, 3, 18]. It minimizes
an energy function consisting of a data term (computed us-
ing color likelihoods of foreground and background) and a
spatial coherency term. The latter term is the length of the
boundary modulated with the contrast in the image, there-
fore minimizing the energy with this term has a bias towards
shorter boundaries. (This behavior is sometimes referred to
as the “shrinking bias”.) In particular, it is hard for the graph
cut approach to segment thin elongated structures. Consider
Fig. 1. First the user constrains some pixels to be fore- and
background using brushes (a). The segmentation by graph
cut (b) cuts off some of the legs of the insect. If we re-
duce the in�uence of the coherency term then the legs get
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segmented but the overall quality of the the segmentation is
decreased (c). This shows the trade-off between data terms
and regularization, and it indicates that some form of co-
herency is crucial.
Alternative segmentation models One approach to over-
come the shrinking bias is to add �ux of some vector �eld
to the model [10, 25, 12, 15]. It has been shown to be ef-
fective for segmenting thin objects such as blood vessels in
grayscale images [25]. The vector �eld was taken as the
image gradient, which corresponds to the assumption that
the object is bright and the background is dark. However,
extending this approach to arbitrary color images, which is
the scenario considered in this paper, may be challenging.
To our knowledge it was not addressed so far. The dif�culty
here is choosing the vector at each point and the sign of this
vector. Imperfect vector �eld might lower the segmentation
quality. The issue of choosing the sign can be overcome in
the level set framework [12], but at the expense of losing
global optimality.

One possible method to integrate �ux into segmentation
is to optimize the ratio of �ux over boundary length [10, 16].
Thus, we are looking for the boundary with the highest aver-
age contrast. Arguably, this model has no bias towards any
particular shape [10, 16]. However, the issue of choosing a
good vector �eld for color images remains.

Other interesting approaches include the method in [21]
which imposes a prior on the curvature of the bound-
ary, spectral techniques [22] and the random walker algo-
rithm [6]; results in [24] indicate that this method is slightly
more robust towards the shrinking bias.
Our approach In this paper we propose a very differ-
ent way to solve the task of segmenting challenging objects
with very thin, elongated parts. We build the coherency
prior in form of an explicit connectivity prior into the
model. Assume that the user has already segmented a part
of the object using graph cut [18] as in Fig. 1(b). In our in-
teractive framework the user has to click only those pixels
which must be connected to the main object. As Fig. 1(d)
shows a few clicks are suf�cient to obtain a satisfying result
(e). We believe that this is a new and very powerful user
interface for segmenting challenging objects.

We consider several versions of the connectivity con-
straint. Unfortunately, the corresponding optimization



(a) User input (b) Graph Cut (GC) (c) GC less coherency (d) Additional input (e) DijkstraGC

Figure 1.Image segmentation using graph cut with standard (b) and reduced coherency (c) based on input (a). Our new DijkstraGC
method (e) with additional user input (d).

problems are all NP-hard, as we show. To enable the inter-
face shown in Fig. 1 we propose a heuristic algorithm which
we callDijkstraGC. On an abstract level it merges the Dijk-
stra algorithm and graph cut. Note that Dijkstra-like meth-
ods have already been used for extracting thin objects such
as blood vessels [5], although without an explicit segmen-
tation. (A fast marching technique was used in [5], which
can be viewed as a continuous analogue of the Dijkstra al-
gorithm for discrete graphs.) The key feature of our method
that distinguishes it from [5] is the addition of the graph cut
component. This allows to explicitly use the MAP-MRF
formulation which proved to be very successful [3, 18].

We show that on some practical examples DijkstraGC is
able to �nd the global minimum. In order to verify this, we
developed a second (slow) technique based ondual decom-
position, which provides a lower bound on the problem.
Related work Connectivity is automatically enforced in
the classical “snakes” approach [11], since the segmenta-
tion is represented by a simple closed contour. Han et al. [9]
proposed a topology preserving level set method which al-
lows to specify more general topologies. A disadvantage of
both techniques is that the objective is optimized via gradi-
ent descent, which can easily get stuck in a local minimum.
Recently, Zeng et al. [29] followed a similar approach with
a discrete graph-based formulation. After posing the prob-
lem the authors of [29] proved an NP-hardness result and
proposed to modify the max�ow algorithm in [4] so that the
topology of the segmentation is preserved. However, de-
spite our best effort we were unable to compare it to our
approach for the task of segmenting thin objects.1 (Note,
results in [29] are shown for very different types of objects.)

2. Problem formulation
We use an energy function of the form which is standard

for graph cut based image segmentation approaches [3, 18]:

E (x ) =
X

p2V

Ep(xp) +
X

(p;q)2E

Epq(xp; xq) (1)

Here (V; E) is an undirected graph whose nodes corre-
spond to pixels.xp 2 f 0; 1g is the segmentation label of

1We downloaded the source code (ver. 0.9) but did not succeed in ap-
plying it to our examples: sometimes user-provided hard constraints were
not satis�ed, or the segmented thin structure was clearly incorrect. Reim-
plementing the algorithm in [29] did not look straightforward - we found
that many details were missing.

pixel p, where 0 and 1 correspond to the background and
the foreground, respectively. We assume that the pairwise
termsEpq are submodular, i.e.Epq(0; 0) + Epq(1; 1) �
Epq(0; 1) + Epq(1; 0).

As stated in the introduction, our goal is to minimize
functionE(x ) under certain connectivity constraints on the
segmentationx . Three possible constraints are formulated
below. In all of them we assume that we are given an
undirected graph(V; F ) de�ning the “connectivity” rela-
tions between nodes inV. This graph can be different from
the graph(V; E) de�ning the structure of functionE(x ) in
eq. (1). (In our experiments we usually take(V; E) to be an
8-connected 2D grid graph and(V; F ) to be 4-connected.)

Perhaps, the most natural connectivity constraint is the
following:

C0 The set[x ] corresponding to segmentationx must form
a single connected component in the graph(V; F ).

(We denoted[x ] to be the set of nodes with label 1, i.e.
[x ] = f p 2 V j xp = 1 g.) This constraint seems to be very
useful for solving problems discussed in the introduction.
However, minimizing function (1) under the constraintC0
appears to be a very challenging task. This problem can be
shown to be NP-hard even if function (1) has only unary
terms (see below).

In this paper we will focus on different constraintsC1
andC2. We will assume that the user speci�ed two nodes
s; t 2 V . ConstraintC1 is then formulated as follows:

C1 Nodess; t must be connected in the segmentation set
[x ], i.e. there must exist a path in the graph(V; F )
from s to t such that all nodesp in the path belong to
the segmentation:xp = 1 .

We believe thatC1 is very useful for interactive image seg-
mentation. It suggests a natural user interface (Fig. 1). In
this interface nodes is assumed to lie in the largest con-
nected component of the current segmentation. By clicking
at pixelt the user would get a segmentation which connects
t to the main object. We handle multiple clicks in an incre-
mental fashion.

Unfortunately, minimizing (1) underC1 is an NP-hard
problem as well (see below). However, it appears that it is
easier to design good heuristic algorithms forC1 than for
C0. In particular, if functionE(x ) has only unary terms



then the problem withC1 can be reduced to a shortest path
computation with a single source and a single sink and thus
can be solved in polynomial time (see section 3).

Enforcing constraintC1 may result in a segmentation
which has a “width” of one pixel in certain places, which
may be undesirable (see Fig. 6). One way to �x this prob-
lem is to allow the user to specify a parameter� which con-
trols the minimum “width” of the segmentation. Formally,
assume that for each nodep 2 V we have a subsetQp � V .
(This subset would depend on� ; for example, for a grid
graphQp could be the set of all pixelsq such that the dis-
tance fromp to q does not exceed� .) Using these subsets,
we de�ne the following connectivity constraint:
C2 There must exist a path in the graph(V; F ) from s to

t such that for all nodesp in the path the subsetQp

belongs to[x ], i.e.xq = 1 for q 2 Q p.

Clearly,C1 is a special case ofC2 if we chooseQp = f pg
for all nodesp.

Throughout the paper, we denoteP0, P1, P2 to be the
problems of minimizing function (1) under constraintsC0,
C1, C2, respectively. The theorem below shows the dif�-
culty of the problems; its proof is given in [26].

Theorem 1. ProblemsP0, P1, P2are NP-hard.P0andP2
remain NP-hard even if the setE is empty, i.e. function(1)
does not have pairwise terms.

Note, it was also shown in [29] that the following prob-
lem is NP-hard: minimize function (1) on a planar 2D grid
so that the foreground is 4-connected and the background is
8-connected. It is straightforward to modify the argument
in [29] to show that the problem is NP-hard if only the 4-
connectedness of the foreground is imposed (in other words,
P0 is NP-hard even for planar 2D grids).

To conclude this section, we will state some simple facts
about the relationship of problemsP0-P2 and the problem
of minimizing functionE(x ) without any constraints.

Theorem 2. Suppose thatx is a global minimum of func-
tion (1) without any constraints.

(a) There exists an optimal solutionx � of P2 which in-
cludesx , i.e. [x ] � [x � ]. The same holds for the
problemP1since the latter is a special case.

(b) Suppose thatE � F . LetC1; : : : ; Ck � V be the con-
nected components of the set[x ] in the graph(V; F ).
Then there exists an optimal solutionx � of P0 such
that each componentCi is either entirely included in
[x � ] or entirely excluded. In other words, ifCi and
[x � ] intersect thenCi � [x � ].

A proof is given in [26]. The theorem suggests that as
a �rst step we could run the max�ow algorithm to min-
imize function (1) without any constraints and then con-
tract connected components of the obtained set[x ] to sin-
gle nodes. However, it leaves open the most challenging

initialize : S= ? , PARENT (p)= NULL for all nodesp,
d(s) = min f E(x ) j Qs � [x ]g,
d(p) = + 1 for p 2 V � f sg

while t =2S andV � S contains nodesp with d(p) < + 1

� �nd node p 2 V � S with the smallest distanced(p)

� addp to S

� for all nodesq 2 V � S which are neighbors ofp (i.e.
(p; q) 2 F ) do

- using PARENT pointers, get pathP from s to q
throughp; compute corresponding set�P = [ r 2P Qr

- compute a minimumx of function (1) under the con-
straint �P � [x ]

- if d(q) >E (x ) setd(q) := E(x ), PARENT (q):= p

Figure 2.DijkstraGC algorithm.

question: what to do if a minimum of function (1) does not
satisfy the desired connectivity constraint.

3. Algorithms
The main algorithmic contribution of this paper is a

heuristic method for the problemP2 (and thus forP1 since
the latter is a special case). This method, which we callDi-
jkstraGC, is presented in section 3.1. Then in section 3.2 we
propose an alternative method for a special case of problem
P1 based on the idea ofproblem decomposition. The main
feature of the second technique is that it provides a lower
bound on the optimal value ofP1. We will use it for as-
sessing the performance of DijkstraGC: in the experimental
section it will help us to verify that for some instances Di-
jkstraGC gives an optimal solution.

3.1. DijkstraGC: Merging Dijkstra and graph cuts
The idea of our �rst method is motivated by the Dijk-

stra algorithm [1]. Recall that the latter technique com-
putes shortest distancesd(p) in a directed graph with non-
negative weights from a speci�ed “source” nodes to all
other nodesp.

Similar to the Dijkstra method, we will compute solu-
tions to the problemP2 for a �xed nodes and all nodes
p 2 V (only now these solutions will not necessarily be
global minima). The “distance”d(p) will now indicate the
cost of the computed solution for the pair of nodesf s; pg.

The algorithm is shown in Fig. 2. During the algorithm,
the current solutionx p for nodep with d(p) < + 1 can
be obtained as follows: usingPARENT pointers get path
P and corresponding set�P = [ r 2P Qr , and then compute
a minimum of function (1) under the constraint�P � [x ].
Clearly, the obtained solutionx p satis�es the hard con-
straintC2 for the pair of nodesf s; pg.

The setS contains “permanently labeled” nodes: once
a nodep has been added toS, its costd(p) and the corre-
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Qc = f c; b; b0g, Q t = f t; b; b0g
Qp = f pg for all other nodesp

(a) ProblemP1 (b) ProblemP2, no pairwise terms

Figure 3.Suboptimality of DijkstraGC. Examples of problems
on which DijkstraGC give suboptimal results. Graphs shown in
the pictures are the connectivity graphs(V; F ). Numbercp at
nodep gives the unary termcxp , numbercpq at edge(p; q) gives
the pairwise termcpq jxq � xp j. Both in (a) and (b) DijkstraGC
will output solutionf s;a;b;b0;tg or f s;a0;b;b0;tg with cost 7, while
the optimal solutionf s;c;b;b0;tg has cost 6.

sponding solution will not change anymore.
Let us list some of the invariants that are maintained dur-

ing DijkstraGC (they follow directly from the description):

I1 If d(p)=+ 1 thenp6= s andPARENT (p)= NULL .

I2 If d(p) < + 1 thenPARENT pointers give the unique
pathP from s to p, andd(p) = min f E(x ) j �P � [x ]g
where �P = [ r 2P Qr .

I3 If PARENT (q) = p thend(p) � d(q) < + 1 .

I4 d(p) < + 1 for nodesp 2 S.

Theorem 3. If functionE(x ) does not have pairwise terms
andQp = f pg for all nodesp (i.e we have an instance of
P1) then the algorithm in Fig. 2 produces an optimal solu-
tion.

A proof is given in [26]. After submission we also found
another special case in which DijkstraGC gives an optimal
result (see [26]).

If conditions of the theorem are relaxed then the problem
may become NP-hard, as theorem 1 states. Not surprisingly,
DijkstraGC may then produce a suboptimal solution. Two
examples are shown in Fig. 3. Note that in these examples
the “direction” of DijkstraGC matters: if we run it from
s to t then we obtain a suboptimal solution, but running
DijkstraGC fromt to s will give an optimal segmentation.

We now turn to the question of ef�cient implementation.
One computational component of the algorithm is �nding
a nodep 2 V � S with the smallest value ofd(p) (same
as in the Dijkstra algorithm). We used a binary heap struc-
ture for implementing the priority queue which stores nodes
p 2 V � S with d(p) < + 1 . The bottleneck, however, is
max�ow computations: DijkstraGC requires many calls to
the max�ow algorithm for minimizing function (1) under
the constraintsxr = 1 for nodesr 2 �P. These computa-
tions are considered in the remainder of this section.
Optimized DijkstraGC First, we will describe a tech-
nique which allows to reduce the number of calls to

initialize : S= ? , PARENT (p)= NULL for all nodesp,
d(s) = min f E(x ) j Qs � [x ]g,
d(p) = + 1 for p 2 V � f sg

while t =2S andV � S contains nodesp with d(p) < + 1

� �nd node p 2 V � S with the smallest distanced(p)

� usingPARENT pointers, get pathP from s to p; com-
pute corresponding set�P = [ r 2P Qr

� compute a minimumx of function (1) under the con-
straint �P � [x ]

� addp to S, setA = f pg, markp as “unprocessed”

� while A has unprocessed nodes

- pick unprocessed nodep0 2 A
- for all edges(p0; q) 2 F with q 2 V � S do

� if Qq � [x ] setd(q) := E(x ), PARENT (q) := p0,
addq to S and toA as an unprocessed node

- markp0 as “processed”

� for all nodesq 2 V � S which are neighbors ofA (i.e.
(p0; q) 2 F for some nodep0 2 A ) do

- pick nodep0 2 A with (p0; q) 2 F
- using PARENT pointers, get pathP from s to q

throughp0; compute corresponding set�P = [ r 2P Qr

- compute a minimumx of function (1) under the con-
straint �P � [x ]

- if d(q) >E (x ) setd(q) := E(x ), PARENT (q):= p0

Figure 4.Optimized version of the DijkstraGC algorithm.

max�ow. Consider the step that adds nodep to the set of
permanently labeled nodesS. DenoteP to be the path from
s to p given byPARENT pointers, and let�P = [ r 2P Qr .
Let us �x nodes in �P to 1 and compute a minimumx of
function (1) under these constraints. The segmentation set
[x ] will contain �P, but it may include many other nodes
as well. Then it might be possible to add several nodes to
S using this single computation. Indeed, supposep has a
neighborq 2 V � S , (p; q) 2 F , such thatQq � [x ]. The
algorithm in Fig. 2 would setd(q) = d(p) = E(x ) while
exploring neighbors ofp. This would make the distance
d(q) to be the smallest among nodes inV �S , so the nodeq
could be the next node to be added toS. Therefore, we can
addq to S immediately.

An algorithm which implements this idea is shown in
Fig. 4. Before exploring neighbors ofq, we check which
nodes can be added toS for “free”. The set of these nodes
is denoted asA; clearly, it includesp. After adding nodes in
A to S, we explore neighbors ofA which are still inV � S .

Note that there is a certain freedom in implementing the
DijkstraGC algorithm: it does not specify which nodep 2
V � S with the minimum distance to choose if there are



several such nodes. It is not dif�cult to see that under a
certain selection rule DijkstraGC becomes equivalent to the
algorithm in Fig. 4.
Flow and search tree recycling We used the max�ow
algorithm in [4], and reused �ows and search trees as de-
scribed in [13].

In DijkstraGC we often need to �x/un�x nodes in differ-
ent parts of the graph in a rather chaotic order. We believe
that this signi�cantly reduces the effectiveness of �ow and
search tree recycling. Two ideas could potentially be used
to overcome this drawback. The �rst one is based on the ob-
servation that different “branches” are often independentin
a certain sense.This could allow to reorder max�ow com-
putations. To get the same type of result as DijkstraGC
we would need to redo computations if we detect an in-
consistency, as in the Bellman-Ford label-correcting algo-
rithm. The second idea is to maintain multiple graphs for
performing computations in different parts of the image,
so that changes in each graph would be more “local”. It
could also be feasible to store a small subset of the nodes
for each graph, increasing it “on demand”. Reduced mem-
ory requirements could then allow to use a larger number of
graphs. Exploring these ideas is left as a future work.

3.2. Problem decomposition approach
In this section we propose a different technique for a spe-

cial case of problemP1; we will use it for assessing the
performance of DijkstraGC.
Overview On the high level, the idea is to decompose
the original problem into several “easier” subproblems, for
which we can compute ef�ciently a global minimum (or
obtain a good lower bound). Combining the lower bounds
for individual subproblems will then provide a lower bound
for the original problem. The decomposition and the corre-
sponding lower bound will depend on a parameter vector� ;
we will then try to �nd a vector� that maximizes the bound.

This approach is well-known in combinatorial opti-
mization; sometimes it is referred to as “dual decomposi-
tion” [2]. In vision the decomposition approach is probably
best known in the context of the MAP-MRF inference task.
It was introduced by Wainwright et al. [27] who decom-
posed the problem into a convex combination of trees and
proposed message passing techniques for optimizing vector
� . These techniques do not necessarily �nd the best lower
bound (see [14] or review article [28]). Schlesinger and
Giginyak [19, 20] and Komodakis et al. [17] proposed to
use subgradient techniques [23, 2] for MRF optimization,
which guarantee to converge to a vector� yielding the best
possible lower bound.
Solving P1 via problem decomposition We now apply
this approach toP1. To get tractable subproblems, we im-
pose the following simplifying assumptions. First, we as-
sume that the graph(V; F ) is planar, andE = F . Sec-
ond, we assume that pixels on the image boundary are con-

strained to be background, i.e. their label is 0. We argue that
these assumptions represent an important practical subclass
of the image segmentation task, and thus can be used for
assessing the performance of DijkstraGC for real problems.
Note that the second assumption encodes the prior knowl-
edge that the object lies entirely inside the image, which is
very often the case in practice.

We denoteC(x ) to be the hard constraint term which
is 0 if the segmentationx satis�es the connectivity con-
straint C1 and the background boundary condition de-
scribed above, and otherwiseC(x ) is + 1 . Some of these
hard constraints will also be included in functionE(x ) as
unary terms, namely the background boundary constraints
and foreground constraintsxs = x t = 1 , which follow
from C1. Our parameter vector� will have two parts:
� = ( � 1; � 2) where vectors� 1 and� 2 correspond to nodes
and edges of the graph(V; E), respectively (� 1 2 RV ,
� 2 2 RE). Given labelingx , let � (x ) 2 f 0; 1gE be the
vector of indicator variables showing discontinuities ofx ,
i.e. � pq(x ) = jxq � xp j for an edge(p; q) 2 E. We will use
the following decomposition:

E(x ) + C(x ) = E 0(x j � ) + E 1(x j � ) + E 2(x j � ) (2)

where

E 0(x j � ) = E(x ) � h x ; � 1 i � h � (x ); � 2 i (2a)

E 1(x j � ) = C(x ) + hx ; � 1i (2b)

E 2(x j � ) = C(x ) + h� (x ); � 2 i (2c)

Let us discuss each subproblem in more detail.
Subproblem 0 FunctionE 0(x j � ) consists of unary and
pairwise terms. We will require this function to be submod-
ular; this is equivalent to specifying upper bounds on com-
ponents� 2

pq. Since there are no connectivity constraints, we
can compute the global minimum� 0(� ) = min x E 0(x j � )
using a max�ow algorithm2.
Subproblem 1 FunctionE 1(x j � ) has only unary terms
and the connectivity constraintC1. As discussed in the
previous section, we can compute the global minimum
� 1(� ) = min x E 1(x j � ) using, e.g. DijkstraGC algorithm.
Note, in this case it is essentially equivalent to the Dijkstra
algorithm.
Subproblem 2 We will require vector� 2 to be non-
negative. We compute a lower bound� 2(� ) on E 2(x j � 2)
using a very fast technique whose details are given in [26].
In short, we compute two edge disjoint paths of minimum
cost in the dual graph from a set of nodes “behind” nodes
to a set of nodes “behind” nodet. (This is motivated by the

2Instead of restricting functionE 0 to be submodular, one could use the
roof duality approach [8] to get a lower bound onE 0(x j � ). For sub-
modular functions this lower bound coincides with the global minimum,
therefore the best lower bound on the original function can only become
better. We have not implemented this yet.



fact that an optimal segmentation can be viewed as a simple
closed contour going “around”s andt.)
Maximizing the lower bound We described a lower
bound on problemP1which can be written as

�( � ) = � 0(� ) + � 1(� ) + � 2(� ) � E (x ) + C(x )

where� belongs to a convex set
 = f (� 1; � 2 j 0 � � 2
pq �

� 2 max
pq g. Clearly, � is a concave function of� . Similar

to [19, 20, 17], we used a projected subgradient method [23,
2] for maximizing�( � ). Details of our implementation and
the procedure for choosing solutionx are given in [26].

4. Experimental results
In the previous section we presented DijkstraGC, a new

algorithm that minimizes energy (1) under certain connec-
tivity constraints on the segmentationx . In this section we
�rst discuss the advantages of including this algorithm in an
interactive system for image segmentation and second con-
sider the optimality properties of the algorithm.

4.1. DijkstraGC for interactive segmentation
The form of the energy (1) follows the approach of pre-

vious energy minimization techniques for interactive image
segmentation [3, 18]. We de�neEp(xp) as a data likelihood
term andEpq(xp; xq) as a contrast-dependent coherency
term, which are de�ned as follows.

Hard constraints for background and foreground are
speci�ed in the form of brush strokes. Based on
this input a probabilistic model is computed for the
colors of background (GB ) and foreground (GF ) us-
ing two different Gaussian Mixture Models. Ep(xp)
is then computed asEp(0) = � log(Pr(zp jGB )) and
Ep(1) = � log(Pr(zp jGF )) where zp contains the three
color channels of sitep (see details in [18]). The co-
herency term incorporates both an Ising prior and a contrast-
dependent component and is computed as

Epq(xp; xq) =
jxq � xp j
dist(p; q)

�
� 1 + � 2 exp� � kzp � zqk2

�

where � 1 and � 2 are weights for the Ising
and contrast-dependent prior respectively, and

� =
�

2
D

(zp � zq)2
E� � 1

, where h�i denotes expecta-
tion over an image sample (as motivated in [18]). A term
of this form encourages coherence in regions of similar
color and also prevents isolated pixels to appear in the
segmentation (see [3, 18]). In our experiments the number
of components used forGB and GF were 5, we �xed
� 1 = 2 :5 and� 2 = 47:5 (which sums up to50, as in [18]).
We used an8-neighborhood system forE .

We now discuss how to integrate the DijkstraGC algo-
rithm in an interactive system for image segmentation. Af-
ter the user has provided scribbles a segmentation is com-
puted with graph cut. As in [18] we iterate this process to

further minimize the energy, where the segmentation of a
previous run is used to update color models. It can hap-
pen that part of the foreground is missing or that the fore-
ground region is disconnected. Then the user can specify
with one click such a site that should be connected with the
current result. DijkstraGC algorithm is used to compute the
new segmentation. In this way the user only has to specify
one node (from the two nodes necessary to run DijkstraGC)
since the other node is assumed to be contained within the
largest connected component of the graph cut segmentation.

We have tested this approach on15 images with in total
40 connectivity problems, i.e. additional clicks for Dijk-
straGC. Fig. 1 and 5 show some results, where we compare
graph cut, using scribbles only, with DijkstraGC, where the
user set additional clicks after obtaining the graph cut result.
We see that usually graph cut based algorithms tend to cut
off thin elongated structures in the image. To retrieve these
thin structures using brush strokes can be very dif�cult since
they may only be1 � 2 pixel wide. To obtain a satisfying
result with DijkstraGC the user only needs some additional
clicks and the selection of a width parameter� , which is
a considerable reduction in the amount of user interactions
needed. For the last example in Fig. 5 the number of clicks
necessary to extract the segmentation was11 since the thin
structures we want to segment (the legs of the spider) inter-
sect each other and the path that DijkstraGC computes goes
throw the already segmented leg.

The running time presented in the last column of Fig. 5
includes all the clicks in the image, and it is, as to be ex-
pected, related to the number of clicks and image size. The
optimized version of DijkstraGC (Fig. 4) improved the run-
time over the simple version (Fig. 2) from, e.g.28:4 to 14:8
seconds for the last image in Fig. 5.

The width parameter � provides the possibility of spec-
ifying a minimum desired width of the connection between
the two components. This parameter is not included directly
in the formulation of the DijkstraGC algorithm. Instead we
de�ne for all nodesp a setQp according to� . For � = 1 ,
Qp = f pg; for � = 2 , Qp is the set of4 nodes in a2 � 2
square that includes nodep and for � = 3 , Qp contains
p and its neighbors in a 4-connected grid. Fig. 6 shows
that this parameter can be important in a practical system to
avoid that the connectivity constraint is satis�ed by a seg-
mentation with a one pixel width only. Please note that in
general� does not have to be the exact width of the structure
we want to segment. In �g. 6 setting the width parameter to
� = 2 was suf�cient to recover the thin leg which has a
larger width than5 pixels.

Direction of DijkstraGC. Swapping the nodess andt,
i.e. changing the direction of DijkstraGC, may lead to two
different segmentations as seen in the example of �g. 3.
However we observed that the two segmentations usually
only differ by a small number of pixels (on average less than



(a) User input (b) Graph Cut [18] (c) Additional user input (d) DijkstraGC (e) Problem Speci�cation

size = 481� 321
time = 1.0
� = 1

size = 568� 426
time = 2.9
� = 2

size = 640� 865
time = 14.8
� = 3

Figure 5.Results of the DijkstraGC algorithm. (a) original images with user scribbles (blue background; green foreground); (b) Graph
Cut results using [18]; (c) Selection of sites for connectivity, where numbers present the input order; (d) DijkstraGC results; (e) Problem
speci�cation: image size, running time for DijkstraGC (on2:16 GHz CPU with2GB RAM), and minimum width speci�ed by the user.

(a) User input (b) Graph Cut (c) DijkstraGC� = 1 (d) DijkstraGC� = 2

Figure 6.Width parameter � . Two different results obtained with DijkstraGC algorithm for different values of� (minimum width).

1% of the number of pixels in set[x ]) and the difference is
often not visually signi�cant.

In contrast, the difference in speed can be substantial. In
our examples the running time was on average reduced by
half if the “source” nodes was in the smaller component
(out of the two components that we want to connect). Ac-
cordingly, we chose it as the default option and used it for
the results presented in Fig. 5 and 6.

4.2. Optimality of DijkstraGC
The dual decomposition algorithm, described in sec-

tion 3.2, gives both a solution for a special case ofP1 and

a lower bound on the optimal value ofP1. Although this
technique is not useful for a practical system, since the run-
ning time is on average3 hours, it can be used to assess the
optimality of DijkstraGC.

We considered40connectivity problems (i.e. user clicks)
where the dual decomposition approach is applicable, i.e.
all pixels at the image boundary are background. Another
restriction for this approach is that we have to use a pla-
nar graph (4-connected 2D grid) for max�ow computations.
For12out of the40problems the dual decomposition algo-
rithm gave the global optimum. It is a positive result that for



all these12 cases also DijkstraGC returned the global opti-
mum. The �rst image in Fig. 5 is one of the examples for
which we obtained the global optimum for all the connec-
tivity constraints. (Note that the result is slightly different
from the one presented, since for this optimality experiment
we had to choose the graph to be planar, i.e. 4-connected.)
For all the other problems we observed that the result pro-
vided by DijkstraGC was always better in terms of energy
value than the result of the dual decomposition method.

5. Conclusions and Future Work
In this paper we proposed to overcome the “shrinking

bias” of graph cut methods by imposing connectivity con-
straints in the segmentation. We presented a new algorithm
DijkstraGC that computes a segmentation satisfying those
constraints and we showed that integrating this algorithm in
an interactive system for image segmentation reduces con-
siderably the amount of user interaction necessary to seg-
ment thin structures in the image.

Although in general DijkstraGC is not guaranteed to
compute the global minimum of our NP-hard optimization
problem, we believe that in practice it is not an issue. This
claim is supported by two facts: (i) running DijkstraGC in
different directions gives almost the same result, and (ii)Di-
jkstraGC computes the optimal solution for some particular
instances (see sec. 4.2).

Currently, the speed of DijkstraGC is perhaps the main
drawback for a practical interactive segmentation system.
However, we believe that there is a large scope for improve-
ment via rearrangement of the order in which nodes are
visited during the algorithm, or the use of multiple graphs
for max�ow computations (sec. 3.1). We intend to explore
these ideas in the future.
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