Graph cut based image segmentation with connectivity prios
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Abstract segmented but the overall quality of the the segmentation is

decreased (c). This shows the trade-off between data terms

Graph cut is a popular technique for interactive image and regularization, and it indicates that some form of co-
segmentation. However, it has certain shortcomings. In herency is crucial.
particular, graph cut has problems with segmenting thin Alternative segmentation models One approach to over-
elongated objects due to the “shrinking bias”. To overcome come the shrinking bias is to add ux of some vector eld
this problem, we propose to impose an additional connectiv-to the model [10, 25, 12, 15]. It has been shown to be ef-
ity prior, which is a very natural assumption about objects. fective for segmenting thin objects such as blood vessels in
We formulate several versions of the connectivity constrai  grayscale images [25]. The vector eld was taken as the
and show that the corresponding optimization problems are image gradient, which corresponds to the assumption that
all NP-hard. the object is bright and the background is dark. However,

For some of these versions we propose two optimizationextending this approach to arbitrary color images, which is
algorithms: (i) a practical heuristic technique whichwellca  the scenario considered in this paper, may be challenging.
DijkstraGC and (ii) a slow method based on problem de- To our knowledge it was not addressed so far. The dif culty
composition which provides a lower bound on the problem. here is choosing the vector at each point and the sign of this
We use the second technique to verify that for some practi-vector. Imperfect vector eld might lower the segmentation
cal examples DijkstraGC is able to nd the global minimum. quality. The issue of choosing the sign can be overcome in
the level set framework [12], but at the expense of losing
global optimality.

One possible method to integrate ux into segmentation

The task of interactive image segmentation has attracteds g optimize the ratio of ux over boundary length [10, 16].
a signi cant attention in recent years [10, 3, 18, 6, 24, 21]. Thus, we are looking for the boundary with the highest aver-
The ultimate goal is to extract an object with as few user in- age contrast. Arguably, this model has no bias towards any
teractions as possible. It is widely accepted that some prio particular shape [10, 16]. However, the issue of choosing a
on segmentations is needed for achieving this goal. Dif- good vector eld for color images remains.
ferent priors have a preference towards different types of  Other interesting approaches include the method in [21]
shapes, as we discuss next. which imposes a prior on the curvature of the bound-
Graph cut A very popular approach, which we also use ary, spectral techniques [22] and the random walker algo-
in this paper, is based on graph cut [7, 3, 18]. It minimizes rithm [6]; results in [24] indicate that this method is slfyh
an energy function consisting of a data term (computed us-more robust towards the shrinking bias.
ing cplor likelihoods of foreground and packground) and a oyr approach In this paper we propose a very differ-
spatial coherency term. The latter term is the length of the gyt ay to solve the task of segmenting challenging objects
boundary modulated with the contrast in the image, there-yiih very thin, elongated parts. We build the coherency
fore minimizing the energy with this term has a bias towards prior in form of anexplicit connectivity prior into the
shorter boundaries. (This behavior is sometimes refeaed t ,odel. Assume that the user has already segmented a part
as the “shrinking bias”.) In particular, itis hard for theagh ~ of the object using graph cut [18] as in Fig. 1(b). In our in-
cutapproach to segment thin elongated structures. Cansideieractive framework the user has to click only those pixels
Fig. 1. First thg user constrains some pixels to pe fore- andyyhich must be connected to the main object. As Fig. 1(d)
background using brushes (a). The segmentation by grapfshows a few clicks are suf cient to obtain a satisfying résul
cut (b) cuts off some of the legs of the insect. If we re- (g) \we believe that this is a new and very powerful user
duce the in uence of the coherency term then the legs getinierface for segmenting challenging objects.
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Figure 1.lmage segmentation using graph cut with standard (b) and redced coherency (c) based on input (a). Our new DijkstraGC
method (e) with additional user input (d).

problems are all NP-hard, as we show. To enable the inter-pixel p, where 0 and 1 correspond to the background and
face shown in Fig. 1 we propose a heuristic algorithm which the foreground, respectively. We assume that the pairwise
we callDijkstraGC. On an abstract level it merges the Dijk- termsEpq are submodular, i.eEpq(0;0) + Epq(1;1)

stra algorithm and graph cut. Note that Dijkstra-like meth- Epq(0; 1) + Epq(1;0).

ods have already been used for extracting thin objects such As stated in the introduction, our goal is to minimize
as blood vessels [5], although without an explicit segmen- functionE (x) under certain connectivity constraints on the
tation. (A fast marching technique was used in [5], which segmentatiox. Three possible constraints are formulated
can be viewed as a continuous analogue of the Dijkstra al-below. In all of them we assume that we are given an
gorithm for discrete graphs.) The key feature of our method undirected graplfV;F) de ning the “connectivity” rela-
that distinguishes it from [5] is the addition of the graph cu tions between nodes M. This graph can be different from
component. This allows to explicitly use the MAP-MRF the graph(V; E) de ning the structure of functiof (x) in

formulation which proved to be very successful [3, 18]. eg. (1). (In our experiments we usually tai& E) to be an
We show that on some practical examples DijkstraGC is 8-connected 2D grid graph aifd; F) to be 4-connected.)
able to nd the global minimum. In order to verify this, we Perhaps, the most natural connectivity constraint is the

developed a second (slow) technique basedwal decom-  following:
position which provides a lower bound on the problem.
Related work Connectivity is automatically enforced in
the classical “snakes” approach [11], since the segmenta-
tion is represented by a simple closed contour. Han et al. [9](We denotedx] to be the set of nodes with label 1, i.e.
proposed a topology preserving level set method which al-[x] = fp 2 V j x, = 1g.) This constraint seems to be very
lows to specify more general topologies. A disadvantage of useful for solving problems discussed in the introduction.
both techniques is that the objective is optimized via gradi However, minimizing function (1) under the constra@@

ent descent, which can easily get stuck in a local minimum. appears to be a very challenging task. This problem can be
Recently, Zeng et al. [29] followed a similar approach with  shown to be NP-hard even if function (1) has only unary
a discrete graph-based formulation. After posing the prob-terms (see below).

lem the authors of [29] proved an NP-hardness result and |n this paper we will focus on different constrair@d
proposed to modify the max ow algorithm in [4] so thatthe andC2. We will assume that the user speci ed two nodes
topology of the segmentation is preserved. However, de-s;t 2 V. ConstraintC1 is then formulated as follows:

spite our best effort we were unable to compare it to our
approach for the task of segmenting thin objéct@\ote,
results in [29] are shown for very different types of objects

CO The sefx] corresponding to segmentati@must form
a single connected componentin the grgphF ).

C1 Nodess;t must be connected in the segmentation set
[x], i.e. there must exist a path in the grap¥i; F)
from s to t such that all nodeg in the path belong to

2. Problem formulation the segmentatiorx, = 1.

We use an energy function of the fqrm which is standard \yje pejieve thaC1 is very useful for interactive image seg-
for graph cut based image segmentation approaches [3, 18]y entation. It suggests a natural user interface (Fig. 1). In
E(x) = X Ep(Xp) + X Epq(Xp; Xq) ) this interface node is assumed to lie in the_ largest con-
nected component of the current segmentation. By clicking
at pixelt the user would get a segmentation which connects
t to the main object. We handle multiple clicks in an incre-
mental fashion.
1we downloaded the source code (ver. 0.9) but did not succeap-i Unfortunately, minimizing (1) unde€1 is an NP-hard

plying it to our examples: sometimes user-provided hargtamts were : P
not satis ed, or the segmented thin structure was cleadpirect. Reim- problem as well (See below). However, it appears that itis

plementing the algorithm in [29] did not look straightfomsia we found easier to de_Sign QQOd he_uriStiC algorithms @& than for
that many details were missing. CO. In particular, if functionE (x) has only unary terms

p2v (pia)2E
Here (V; E) is an undirected graph whose nodes corre-
spond to pixels.xp, 2 f 0;1gis the segmentation label of




then the problgm Witl_ttl can be reduced t_o a shprtest path initialize: S= 2, PARENT (p)= NULL for all nodesp,

computation with a single source and a single sink and thus d(s)=min fE(x)jQs [x]g

can be solved in polynomial time (see section 3). dp)=+ 1 forp2V f sg '
Enforcing constraintC1 may result in a segmentation

which has a “width” of one pixel in certain places, which | whilet2S andV S contains nodep with d(p)< +1

may be undesirable (see Fig. 6). One way to X this prob- ndnodep2V S with the smallest distanc(p)
lem is to allow the user to specify a parametavhich con-

trols the minimum “width” of the segmentation. Formally, addpto S
assume that for each noge V we have a subs€, V . for allnodesq2 V S which are neighbors gf (i.e.
(This subset would depend on for example, for a grid (p;9) 2F)do

graphQp could be the set of all pixelg such that the dis-
tance fromp to g does not exceed.) Using these subsets,
we de ne the following connectivity constraint:
C2 There must exist a path in the grap¥d; F ) from s to
t such that for all nodeg in the path the subse®,
belongs tdx], i.e.xq =1 forq2 Qy.
Clearly,C1is a special case @2 if we chooseQ, = fpg Figure 2.DijkstraGC algorithm.

for all nodesp. _ . - .
Throughout the paper, we dend®, P1, P2 to be the guestion: what to do if a minimum of function (1) does not

problems of minimizing function (1) under constrais, satisfy the desired connectivity constraint.
C1, C2, respectively. The theorem below shows the dif- 3 Algorithms
culty of the problems; its proof is given in [26].

- using PARENT pointers, get path® from s to q
throughp; compute corresponding get= [ ;2p Q;

- compute a minimum of function (1) under the cor
straintP [x]

- if d(g)>E (x) setd(g):= E(x), PARENT (g):=p

The main algorithmic contribution of this paper is a
Theorem 1. ProblemsP0, P1, P2 are NP-hard.POandP2 heuristic method for the probleR2 (and thus foP1 since
remain NP-hard even if the sEtis empty, i.e. functioll) the latter is a special case). This method, which welall
does not have pairwise terms. jkstraGQG is presented in section 3.1. Then in section 3.2 we
Note, it was also shown in [29] that the following prob- propose an alternative method for a special case of problem
lem is NP-hard: minimize function (1) on a planar 2D grid P1 based on the idea @giroblem decompositionThe main
so that the foreground is 4-connected and the background igeature of the second technique is that it provides a lower
8-connected. It is straightforward to modify the argument bound on the optimal value &#1. We will use it for as-
in [29] to show that the problem is NP-hard if only the 4- sessing the performance of DijkstraGC: in the experimental
connectedness of the foreground is imposed (in other words section it will help us to verify that for some instances Di-
POis NP-hard even for planar 2D grids). jkstraGC gives an optimal solution.
To conclude this section, we will state some simple facts , ) . .
about the relationship of problenP)-P2 and the problem 3.1. DijkstraGC: Merging Dijkstra and graph cuts
of minimizing functionE (x ) without any constraints. The idea of our rst method is motivated by the Dijk-
stra algorithm [1]. Recall that the latter technique com-
putes shortest distancd) in a directed graph with non-
negative weights from a speci ed “source” nodeto all

Theorem 2. Suppose that is a global minimum of func-
tion (1) without any constraints.

(a) There exists an optimal solution of P2 which in- other nodeg.
cludesx, i.e. [x] [x ]. The same holds for the Similar to the Dijkstra method, we will compute solu-
problemP1 since the latter is a special case. tions to the problenP2 for a xed nodes and all nodes

p 2 V (only now these solutions will not necessarily be
global minima). The “distanced(p) will now indicate the
cost of the computed solution for the pair of noflespg.
The algorithm is shown in Fig. 2. During the algorithm,
. the current solutiorxP for nodep with d(p) < +1 can
b ] or entirely excluded. -In other words, @ and be obtained as follows: usifgARENT pointers get path
[x lintersecttherG  [x ]. P and corresponding s& = [ (2p Q,, and then compute
A proof is given in [26]. The theorem suggests that as a minimum of function (1) under the constraidt  [x].
a rst step we could run the max ow algorithm to min- Clearly, the obtained solutiorP satis es the hard con-
imize function (1) without any constraints and then con- straintC2 for the pair of node$s; pg.
tract connected components of the obtained»sgto sin- The setS contains “permanently labeled” nodes: once
gle nodes. However, it leaves open the most challenginga nodep has been added 9, its costd(p) and the corre-

nected components of the $ef in the graph(V; F).
Then there exists an optimal solution of PO such
that each componer@; is either entirely included in



2
Q¢ = fc;b;Bg, Q = ft;b; by
Qp = fpg for all other nodep
(b) ProblemP2, no pairwise terms

Figure 3.Suboptimality of DijkstraGC. Examples of problems
on which DijkstraGC give suboptimal results. Graphs shown i
the pictures are the connectivity grapf¥;F). Numberc, at
nodep gives the unary terrx,, numbercy,y at edge(p; q) gives
the pairwise terntpgjXq  Xpj. Bothin (a) and (b) DijkstraGC
will output solutionf s;a;b;dtg or fs;a%;Htg with cost 7, while
the optimal solutiorf s;c;b;Btg has cost 6.

(a) ProblenmP1

sponding solution will not change anymore.

Let us list some of the invariants that are maintained dur-
ing DijkstraGC (they follow directly from the descriptian)
1 If d(p)=+ 1 thenp6& sandPARENT (p)= NULL.

2 If d(p) < +1 thenPARENT pointers give the unique
pathP fromstop, andd(p) = min fE(x)jP  [x]g
whereP = [ (2p Q;.

I3 If PARENT (q) = pthend(p)
14 d(p) < +1 fornodesp2S.

d(q) < +1 .

Theorem 3. If functionE (x) does not have pairwise terms
andQp = fpg for all nodesp (i.e we have an instance of
P1) then the algorithm in Fig. 2 produces an optimal solu-
tion.

A proof is given in [26]. After submission we also found
another special case in which DijkstraGC gives an optimal
result (see [26]).

If conditions of the theorem are relaxed then the problem

initialize: S=?, PARENT (p)= NULL for all nodesp,
d(s) =min fE(x) jQs  [x]g,
dpp=+1 forp2V f sg
while t2S andV S contains nodep with d(p)< +1
ndnodep2V S withthe smallest distana#{p)

usingPARENT pointers, get patR froms top; com-
pute corresponding sét= [ (2p Qr

compute a minimunx of function (1) under the cor
straintP [x]

addpto S, setA = fpg, markp as “unprocessed”
while A has unprocessed nodes

- pick unprocessed nogd 2 A

- for all edgegp®q) 2 F withq2V S do
if Qq [x]setd(d):= E(x), PARENT (q):= p°,
addqgto S and toA as an unprocessed node

- markp®as “processed”

for allnodesg2 V' S which are neighbors oA (i.e.

(p% ) 2 F for some nodg@’2 A) do

- pick nodep®2 A with (p%q) 2 F

- using PARENT pointers, get path® from s to q

throughp® compute corresponding fet= [ ;2p Q;

- compute a minimunx of function (1) under the cor
straintP [x]

- if d(q)>E (x) setd(g):= E(x), PARENT (g):= p°

Figure 4.0ptimized version of the DijkstraGC algorithm.

max ow. Consider the step that adds nopléo the set of
permanently labeled nod&s DenoteP to be the path from
s to p given byPARENT pointers, and leP = [ ;2p Qr.
Let us x nodes inP to 1 and compute a minimum of

may become NP-hard, as theorem 1 states. Not surprisinglyfunction (1) under these constraints. The segmentation set
DijkstraGC may then produce a suboptimal solution. Two [¥] will contain P, but it may include many other nodes
examples are shown in Fig. 3. Note that in these examples?s Well. Then it might be possible to add several nodes to

the “direction” of DijkstraGC matters: if we run it from
s to t then we obtain a suboptimal solution, but running
DijkstraGC fromt to s will give an optimal segmentation.
We now turn to the question of ef cient implementation.
One computational component of the algorithm is nding
anodep 2 V S with the smallest value afi(p) (same
as in the Dijkstra algorithm). We used a binary heap struc-
ture for implementing the priority queue which stores nodes
p2V S withd(p) < +1 . The bottleneck, however, is
max ow computations: DijkstraGC requires many calls to
the max ow algorithm for minimizing function (1) under
the constraintx; = 1 for nodesr 2 P. These computa-
tions are considered in the remainder of this section.
Optimized DijkstraGC  First, we will describe a tech-
nigue which allows to reduce the number of calls to

S using this single computation. Indeed, supppdeas a
neighborg2V S ,(p;0 2 F,suchthaQq [x]. The
algorithm in Fig. 2 would setl(q) = d(p) = E(x) while
exploring neighbors op. This would make the distance
d(g) to be the smallest among nodes/nS , so the nodeg
could be the next node to be addedtoTherefore, we can
addqto S immediately.

An algorithm which implements this idea is shown in
Fig. 4. Before exploring neighbors af we check which
nodes can be added $for “free”. The set of these nodes
is denoted a#\; clearly, it includes. After adding nodes in
A to S, we explore neighbors & which are still invV S .

Note that there is a certain freedom in implementing the
DijkstraGC algorithm: it does not specify which nogde
V S with the minimum distance to choose if there are



several such nodes. It is not dif cult to see that under a strained to be background, i.e. their label is 0. We argue tha
certain selection rule DijkstraGC becomes equivalentéo th these assumptions represent an important practical ssbcla
algorithm in Fig. 4. of the image segmentation task, and thus can be used for
Flow and search tree recycling We used the max ow  assessing the performance of DijkstraGC for real problems.
algorithm in [4], and reused ows and search trees as de-Note that the second assumption encodes the prior knowl-
scribed in [13]. edge that the object lies entirely inside the image, which is

In DijkstraGC we often need to x/un x nodes in differ-  very often the case in practice.
ent parts of the graph in a rather chaotic order. We believe We denoteC(x) to be the hard constraint term which
that this signi cantly reduces the effectiveness of ow and is O if the segmentation satis es the connectivity con-
search tree recycling. Two ideas could potentially be usedstraint C1 and the background boundary condition de-
to overcome this drawback. The rst one is based on the ob-scribed above, and otherwi§¥x) is +1 . Some of these
servation that different “branches” are often independent hard constraints will also be included in functi&{x) as
a certain sense.This could allow to reorder max ow com- unary terms, namely the background boundary constraints
putations. To get the same type of result as DijkstraGC and foreground constraints; = Xx; = 1, which follow
we would need to redo computations if we detect an in- from C1. Our parameter vector will have two parts:
consistency, as in the Bellman-Ford label-correctingalgo = ( *; 2) where vectors* and 2 correspond to nodes
rithm. The second idea is to maintain multiple graphs for and edges of the graptV;E), respectively (* 2 RY,
performing computations in different parts of the image, 2 2 REF). Given labelingx, let (x) 2 f0;1gF be the
so that changes in each graph would be more “local”. It vector of indicator variables showing discontinuitiesxgf
could also be feasible to store a small subset of the nodes.e. pq(X) = jXq Xpj for an edg€p; ) 2 E. We will use
for each graph, increasing it “on demand”. Reduced mem-the following decomposition:
ory requirements could then allow to use a larger number of
graphs. Exploring these ideas is left as a future work. E(x)+ C(x)= E°(xj )+ E*(x] )+ E*(xj ) (2)
3.2. Problem decomposition approach

In this section we propose a different technique for a spe-

where

cial case of problen®1; we will use it for assessing the E°%xj ) = E(X) hx;'ih (x);?% (2a)
performance of DijkstraGC. E¥xj) = C(x)+ h; 4 (2b)
Overview On the high level, the idea is to decompose E?(xj ) = Cx)+ h (x); ?i (2¢)

the original problem into several “easier” subproblems, fo

which we can compute ef ciently a global minimum (or Let us discuss each subproblem in more detail.

obtain a good lower bound). Combining the lower bounds Subproblem 0 FunctionE°(x j ) consists of unary and

for individual subproblems will then provide a lower bound pairwise terms. We will require this function to be submod-

for the original problem. The decomposition and the corre- ylar; this is equivalent to specifying upper bounds on com-

sponding lower bound will depend on a parameter vegtor  ponents 2,. Since there are no connectivity constraints, we

we willthen try to nd a vector that maximizes the bound.  can compute the global minimunP( ) = min x E°(xj )
This approach is well-known in combinatorial opti- using a max ow algorithrA.

mization; sometimes it is referred to as “dual decomposi- supproblem 1 FunctionEX(x j ) has only unary terms

tion” [2]. In vision the decomposition approach is probably and the connectivity constrai@l. As discussed in the
best known in the context of the MAP-MRF inference task. previous section, we can compute the global minimum

It was introduced by Wainwright et al. [27] who decom-  1( ) = min x E1(x | ) using, e.g. DijkstraGC algorithm.
posed the problem into a convex combination of trees andnote, in this case it is essentially equivalent to the Difkst
proposed message passing techniques for optimizing vectoggorithm.

. These techniques do not necessarily nd the best IO‘NerSubprobIem 2 We will require vector 2 to be non-

bc_>u.nd (see [14] or review articlg [28]). Schlesinger and negative. We compute a lower bound( ) onE2(x j 2)
Giginyak [19, 20] and Komodakis et al. [17] proposed t0 ,qing 5 very fast technique whose details are given in [26].
use subgradient techniques [23, 2] for MRF optimization, |, ghort, we compute two edge disjoint paths of minimum
Whlch guarantee to converge to a vectgrielding the best .t in the dual graph from a set of nodes “behind” nede
poss_|ble Iowgr bound. N to a set of nodes “behind” node (This is motivated by the
Solving P1 via problem decomposition We now apply
this approach t&®1. To get tractable subproblems, we im- 2Instead of restricting functiok © to be submodular, one could use the

; ; T : ; _ roof duality approach [8] to get a lower bound &P (x j ). For sub-
pose the foIIowmg S|mpllfy|ng assumptions. First, we as modular functions this lower bound coincides with the gla@nimum,

sume that the graph\/;_F) is plana_r, anckE = F. Sec- therefore the best lower bound on the original function caly become
ond, we assume that pixels on the image boundary are conbetter. We have not implemented this yet.




fact that an optimal segmentation can be viewed as a simpl€urther minimize the energy, where the segmentation of a
closed contour going “around’andt.) previous run is used to update color models. It can hap-
Maximizing the lower bound We described a lower pen that part of the foreground is missing or that the fore-
bound on problen®P1 which can be written as ground region is disconnected. Then the user can specify
()= %0+ )+ 2() EM)+ CKX) with one click su_(_:h a site that should_ be connected with the

- current result. DijkstraGC algorithm is used to compute the

where belongs to a convexset f( % 2j0 2 new segmentation. In this way the user only has to specify
2max g Clearly, is a concave function of. Similar one node (from the two nodes necessary to run DijkstraGC)

to [19, 20, 17], we used a projected subgradient method [23,Since the other node is assumed to be contained within the

2] for maximizing (). Details of our implementation and
the procedure for choosing solutignare given in [26].

4. Experimental results

largest connected component of the graph cut segmentation.
We have tested this approach bhimages with in total

40 connectivity problems, i.e. additional clicks for Dijk-

straGC. Fig. 1 and 5 show some results, where we compare

In the previous section we presented DijkstraGC, a new graph cut, using scribbles only, with DijkstraGC, where the
algorithm that minimizes energy (1) under certain connec- user set additional clicks after obtaining the graph cutltes
tivity constraints on the segmentatign In this section we ~ We see that usually graph cut based algorithms tend to cut

rst discuss the advantages of including this algorithmiin a  off thin elongated structures in the image. To retrieve¢hes
interactive system for image segmentation and second conthin structures using brush strokes can be very dif cultsin
sider the optimality properties of the algorithm. they may only bel 2 pixel wide. To obtain a satisfying

.. . . . result with DijkstraGC the user only needs some additional
4.1. DijkstraGC for interactive segmentation clicks and the selection of a width parameterwhich is

The form of the energy (1) follows the approach of pre- a considerable reduction in the amount of user interactions
vious energy minimization techniques for interactive i®ag needed. For the last example in Fig. 5 the number of clicks
segmentation [3, 18]. We de riéy(x,) as a datalikelihood  pecessary to extract the segmentation tvasince the thin
term andEpq(Xp;Xq) as a contrast-dependent coherency structures we want to segment (the legs of the spider) inter-

term, which are de ned as follows. sect each other and the path that DijkstraGC computes goes
Hard constraints for background and foreground are throw the already segmented leg.

specied in the form of brush strokes. Based on
this input a probabilistic model is computed for the
colors of background Gg) and foreground Gg) us-
ing two different Gaussian Mixture Models. Ep(xp)

is then computed asEp(0)= log(Pr(z,jGg)) and
Ep(1)= log(Pr(z,jGg)) where z, contains the three
color channels of sitg (see details in [18]). The co-
herency termincorporates both an Ising prior and a contrast
dependent component and is computed as

The running time presented in the last column of Fig. 5
includes all the clicks in the image, and it is, as to be ex-
pected, related to the number of clicks and image size. The
optimized version of DijkstraGC (Fig. 4) improved the run-
time over the simple version (Fig. 2) from, e2g4 to 14:8
seconds for the last image in Fig. 5.

The width parameter provides the possibility of spec-
ifying a minimum desired width of the connection between
the two components. This parameter is notincluded directly
in the formulation of the DijkstraGC algorithm. Instead we

. _ 1Xq  Xpj 2
Epa(Xp3 Xa) = dist(p;q) ' *o2exp kzp K de ne for all nodesp a setQ, accordingto . For =1,
. . Qp = fpg; for =2,Qp isthe set o nodesina& 2
there 1t art\(?j 2 dar? weights  for ;[_hel Ising 4 Sduare that includes nogeand for = 3, Q, contains
an ppntrast: eeenlen prior— Tespectively, an p and its neighbors in a 4-connected grid. Fig. 6 shows
= 2 (z zq)2 , where hi denotes expecta- thatthis parameter can be importantin a practical system to

tion over an image sample (as motivated in [18]). A term avoid that the connectivity constraint is satis ed by a seg-
of this form encourages coherence in regions of similar mentation with a one pixel width only. Please note that in
color and also prevents isolated pixels to appear in thegeneral does not have to be the exact width of the structure

segmentation (see [3, 18]). In our experiments the numberwe want to segment. In g. 6 setting the width parameter to

of components used foBg and Gk were 5, we xed
1 =2:5and , =47:5(which sums up t&0, as in [18]).
We used aB-neighborhood system fd .

= 2 was suf cient to recover the thin leg which has a
larger width tharb pixels.

Direction of DijkstraGC. Swapping the nodesandt,

We now discuss how to integrate the DijkstraGC algo- i.e. changing the direction of DijkstraGC, may lead to two
rithm in an interactive system for image segmentation. Af- different segmentations as seen in the example of g. 3.
ter the user has provided scribbles a segmentation is comHowever we observed that the two segmentations usually
puted with graph cut. As in [18] we iterate this process to only differ by a small number of pixels (on average less than



(a) User input (b) Graph Cut [18]  (c) Additional user input ) Q@ljkstraGC (e) Problem Speci cation

size =481 321
time =1.0
=1
size =568 426
time=2.9
=2
size = 640 865
time =14.8
=3

Figure 5.Results of the DijkstraGC algorithm. (a) original images with user scribbles (blue backgrounteen foreground); (b) Graph
Cut results using [18]; (c) Selection of sites for conneityiwhere numbers present the input order; (d) Dijkstra@Sults; (e) Problem
speci cation: image size, running time for DijkstraGC (@rl6 GHz CPU with2GB RAM), and minimum width speci ed by the user.

(a) User input (b) Graph Cut (c) DijkstraGC=1 (d) DijkstraGC =2

T
|

Figure 6.Width parameter . Two different results obtained with DijkstraGC algorithor flifferent values of (minimum width).

1% of the number of pixels in s¢t]) and the differenceis  a lower bound on the optimal value BfL.. Although this
often not visually signi cant. technique is not useful for a practical system, since the run

In contrast, the difference in speed can be substantial. Inning time is on averag@hours, it can be used to assess the
our examples the running time was on average reduced byoptimality of DijkstraGC.

half if the “source” nodes was in the smaller component We considered0connectivity problems (i.e. user clicks)
(out of the two components that we want to connect). Ac- where the dual decomposition approach is applicable, i.e.
cordingly, we chose it_ as Fhe default option and used it for g pixels at the image boundary are background. Another
the results presented in Fig. 5 and 6. restriction for this approach is that we have to use a pla-
4.2. Optimality of DijkstraGC nar graph (4-connected 2D grid) for max ow computations.
The dual decomposition algorithm, described in sec- For 12 out of the40 problems the dual decomposition algo-
tion 3.2, gives both a solution for a special casé@fand rithm gave the global optimum. Itis a positive result that fo



all thesel2 cases also DijkstraGC returned the global opti-
mum. The rstimage in Fig. 5 is one of the examples for
which we obtained the global optimum for all the connec-
tivity constraints. (Note that the result is slightly diféat

from the one presented, since for this optimality experimen

we had to choose the graph to be planar, i.e. 4-connected.
For all the other problems we observed that the result pro-

(9]
[10]

iy

vided by DijkstraGC was always better in terms of energy [12]
value than the result of the dual decomposition method.

5. Conclusions and Future Work

In this paper we proposed to overcome the “shrinking
bias” of graph cut methods by imposing connectivity con- [14] v, kolmogorov. Convergent tree-reweighted messagespa
straints in the segmentation. We presented a new algorithm
DijkstraGC that computes a segmentation satisfying those[15] V. Kolmogorov and Y. Boykov. What metrics can be approx-
constraints and we showed that integrating this algorithm i
an interactive system for image segmentation reduces con-
siderably the amount of user interaction necessary to seg{16] V. Kolmogorov, Y. Boykov, and C. Rother. Application$ o
ment thin structures in the image.

Although in general DijkstraGC is not guaranteed to [17]
compute the global minimum of our NP-hard optimization
problem, we believe that in practice it is not an issue. This [18]
claim is supported by two facts: (i) running DijkstraGC in
different directions gives almost the same result, andD{H)
jkstraGC computes the optimal solution for some particular [19]
instances (see sec. 4.2).

Currently, the speed of DijkstraGC is perhaps the main

drawback for a practical interactive segmentation system.

[13]

However, we believe that there is a large scope for improve-[zo]

ment via rearrangement of the order in which nodes are

visited during the algorithm, or the use of multiple graphs
for max ow computations (sec. 3.1). We intend to explore [21]
these ideas in the future.
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