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ABSTRACT

This paper describestwo algorithms for the real-time sgmentationof foreground from badground layers in
steleo video sequencesAutomatic sepaation of layers from colour/contiast or from stereo alone is known to
be error-prone Here, colour, contrast and stereo matding information are fusedto infer layers accurately and
efciently. The r st algorithm, LayeredDynamic Programming(LDP), solvesstero in an extended6-statespace
that representsdoth foreground/ba&grourd layers and occludedregions. The stereo-matt likelihoodis thenfused
with a contrast-sensitivecolour modelthat is learnedon the y, and stereo disparitiesare obtainedby dynamic
programming The secondalgorithm, LayeredGraphCut (LGC), doesnot directly solve stereo. Insteadthe stereo
matd likelihoodis maminalisedover disparitiesto evaluateforegroundand backgroundhypothesesand thenfused
with a contrast-sensitiveolour modellike the oneusedin LDP. Sgmentationis solvedefciently by ternarygraph
cut.

Both algorithmsare evaluatedwith respectto groundtruth data and foundto havesimilar perfomancesubstan-
tially betterthaneitherstereoor colour/contiastalone However, their characteristicswith respecto computational
efciency are rather different. The algorithmsare demonstatedin the application of badkground substitutionand
shownto give good quality compositevideo output.

I. INTRODUCTION

This paperaddressethe problemof separatinga foregroundlayer, from stereovideo,asin gure 1, in realtime.
A prime applicationis for teleconferencingn which the useof a stereowebcamalreadymakes possiblevarious
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input left view input right view automaticlayer sepaation and badkground substitutionin three frames

Fig. 1. An exampleof automaticforeground/backgrond separatiorin binocularstereosequencesThe extractedforeground

sequencean be compositedree of aliasingwith differentstatic or moving backgroundsa usefultool in video-conferencing

applications Stereosequencé\C usedhere.Note: the input synchronizedstereosequencesisedthroughoutthis papercan be
downloadedfrom [1], togetherwith hand-labeledsegmentations.

transformationsof the video streamincluding digital pan/zoom/tiltand object insertion[1]. Here we concentrate
on providing the infrastructurefor live backgroundsubstitution.This demanddoregroundlayer separatiorto near
ComputerGraphicsquality, including -channeldeterminationas in video-matting[12], but with computational
ef ciency sufcient to attainlive streamingspeed.

Layer extractionfrom imageshaslong beenan active areaof research6], [4], [22], [31], [33]. The challenge
addressedhereis to sggmentthe foregroundlayer both accuratelyand ef ciently . Corventional stereoalgorithms
e.g.[25], [13] have provencompetentait computingdepth.Stereaocclusionis afurthercuethatneeddo beaccurately
computed20], [5], [23], [16] to achieve good layer extraction. However, the strengthof stereocuesdegradesover
low-texture regions such as blank walls, sky or saturatedmage areas.Recentlyinteractve colour/contrast-based
sgymentationtechniqueshave beendemonstratedo be very effective [10], [27], even in the absenceof texture.
Saymentatiorbasedon colour/contrastloneis nonetheles®eyond the capability of fully automaticmethods.This
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a) b) c) d)

Fig. 2. Segmentationby fusing colour, contrast and stereo. Resultsof threedifferent sggmentationalgorithmsrun on two

differentstereo-pairgsee[1] for more examples).a) data(left image);b) Segmentationbasedon stereo[16]; c) Segmentation
basedon colour/contrasf27]; d) The LGC algorithmproposecherefusescolour, contrastandstereato achieve a moreaccurate
segmentation.The foregroundartefactsvisible in b) andc) are correctedin d).

suggestsa robust approachthat exploits fusion of a variety of cues.Here we proposea model and algorithmsfor
fusion of stereowith colour and contrast,and a prior for intra-layerspatialcoherence.

The ef ciency requirementsf live backgroundsubstitutionhave restrictedus to algorithmsthat are known to
be capableof nearframe-rateoperation,speci cally dynamic programmingand graph cut [10], [11]. Therefore
two approache$o sggmentationare proposecdhere:LayeredDynamic ProgrammingLDP) and LayeredGraphCut
(LGC). Eachworks by fusinglikelihoodsfor stereo-matchinggolour and contrastto achieze sggmentationquality
unnattainabldrom either sterecor colour/contrasbn their own (see g. 2). This claimis veri ed by evaluationon
stereovideoswith respecto groundtruth (sectionV). Finally, ef cient post-processingor matting[14] is applied
to obtaingoodvideo quality asillustratedin stills andaccompaging video in the CD-ROM proceedings.

The paperis organisedas follows. In section2 we describecomponentsof our probabilistic model that are
commonin bothtechniqueslin sections3 and4 we presentLDP and LGC algorithms,respectiely. Experimental
resultsare givenin section5 andthen conclusionsin section6.

[I. PROBABILISTIC MODELS FOR BI-LAYER SEGMENTATION OF STEREO IMAGES
First we outline the probabilisticstructureof the stereoand colour/contrasimodels.

A. Notation and basicframevork

Pixelsin therecti ed left andright imagesarelabelled and respectiely, andindex eitherthe entireimages,
or just a pair of matchingepipolarlines, as neededOver epipolarlines, the intensity functionsfrom left andright
imagesare

Left andright pixels are orderedby ary particularmatchingpath( g. 3) to give cyclopeanpixels

where . The -axisis the so-calledcyclopeart coordinateaxis. Corventionallyin stereomatchingthe
so-called‘ordering constraint”is imposed andthis meanghateachmovein gure 3 is allowedonly in the positve
guadrant[3], [25]. Furthermorejn our framework, only single-stephorizontaland vertical moves are allowed —
no diagonalor multistepmoves. The reasonfor this — it makesfor a cleanerprobabilisticmodel— is explained

cyclopeanheremeansmid-way betweenleft andright input cameras.
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Fig. 3. Stereo match-space.Notation corventionsfor left and right epipolarlines with pixel coordinates , cyclopean
coordinates and stereodisparity . Possiblematchingpath shavn dashed(cf. [5], [13]).
later Stereo“disparity” along the cyclopeanepipolarline is and disparity is simply

relatedto image coordinates:
@)

Cyclopean coordinatesform an alternatve coordinatesystemto in the matchingdiagram,and are
well known to be helpful for probabilistic modelling of matching[5]. In additionan array of statevariables,
eitherin cyclopeancoordinates or imagecoordinates , takesvalues according
to whetherthe pixel is a foregroundmatch,a backgroundmatchor occluded.

This setsup the notationfor a pathin match-spacevhich is a sequence of disparitiesand states A Gibbs
enepgy can be de ned for the posteriorover the inferred sequence given the image data

. Parameters and relaterespectiely to prior and likelihood termsin the posterior and will be explained
in more detail belon. Then the Gibbs enegy can be globally minimised to obtain a sggmentation and, as
a bi-product, disparities . The LDP algorithm (sectionIll) minimisesthe Gibbs enegy separatelyover each
epipolar line. Alternatively, the LGC algorithm (section V) minimises, globally over the images,a modi ed
Gibbs enegy in which disparity variablesdo not explicitly appear The resultis an estimate
of foreground/backgroundegmentationbut without the bi-productof stereodisparities.

B. Prior distribution over matding paths
In the remainderof this sectiona broadly Bayesianmodelfor the posteriordistribution is setup as
a productof prior andlikelihood:
(2)

The prior distribution is decomposedn theinterestsof tractability asa Markov model,eitherasMarkov
chainsalong scanlinesfor LDP, or as a disparity-independen¥larkov RandomField (MRF) over an entire
image,for LGC. The Markov chainmodeldecomposeshe prior as

®3)

in which the transitionkernel is sparse.The sparsityhasthe effect of restrictingthe space
of allowed moves in match-spacd gure 3) to a small set (seebelow). Within that set, transition probabilities
favour runs within the foreground and within the backgroundstates;within matchedand unmatchedstates;and
favour low disparity in the backgroundwith high disparity in the foreground. Details are given in sectionlll.
More generally an MRF prior for is speci ed as a productof clique potentials over all pixel pairs
deemedto be neighbouringin the cyclopeanimage (LDP), or the left image (LGC). For LDP we
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have but restricted,in Markov chains,to horizontal pixel-pairs— i.e. pairsthat are
neighbourdsn a particularepipolarline. In LGC, wheredisparitiesdo not appearexplicitly,
which is simplerthanin LDP, exceptthat pairs occuralso acrossneighbouringepipolarlines.
Stepwiserestriction for LDP: Previous matching algorithmse.g. [13], [18] have allowed multiple and/or
diagonalmoves on the stereomatchingpaths(g 3). However, the problem here differs signi cantly. In [13],
[18] diagonalmoves are always matched,and horizontal/ertical onesare unmatched However the natureof the
stereomatching problem demandsthat horizontal/\ertical moves should come both in matchedand unmatched
forms. (Matchedhorizontal/\ertical moves are neededto representhe deviation of a visible surfacefrom fronto-
parallel). This raisesa consisteng requirementbetweenmatchedmove types:a path consistingof a sequencef
diagonalmoves is exactly equialentto a correspondingpath in which horizontal and vertical moves alternate
strictly. The probabilitiesof the two pathsshouldthereforebe identical. This is most easily achiezed simply by
outlawing explicit, diagonalmatchedmaoves, forcing them to be expressedinsteadas a horizontal/ertical pair.
This restriction,illustratedin g. 3, thusensuresa consistenfprobabilisticinterpretationof the sequencenatching
problem.Furthermorethe stepwiserestrictionhasthe addedvirtue that eachelement and is “explained”

onceand only once.This is because horizontalstepin g. 3 visitsanev , which is thereby“explained” but
stayswith theold . Corversely a vertical stepvisitsanew . Thuseach andeach  appearsonceand
only onceas inthe term of thejoint likelihood (4) belowv, makingfor a consistentle nition

of the likelihood.

C. Likelihoodfor stereo
We needto modelthe stereo-matchindjk elihood function andthis is expandedas

(4)

wherethe pixelwise negative log-likelihoodratio, for matchvs. non-match,is

®)

Accordingto the de nition, . Commonly[29] stereomatchesare scoredusing SSD (sum-squared
difference),thatis  -norm of differencebetweenimage patches surroundinghypotheticallymatching
pixels . Following [16] we model in termsof SSD but with additive and multiplicative normalisationfor
robustnesdo non-Lambertiareffects and photometriccalibrationerror. This is termedNSSD— normalizedSSD:

(6)

where with aconstantandthe NSSD  is:

_ __ — ()

in which  denoteshe meanvalueover the patch . As a re nement, we further allow for subpixel offset by
parabolicinterpolation,along epipolarlines, of the valuesof

andtake the minimum valueof the parabolao replacethe valueof , Whereit is neededn the matching
algorithm. This subpixel re nementwasfound to improve error ratesmildly, andwassimilar in effect to alteratve
interpolationschemeg24], [7]. This model hasbeentestedagainstthe Middlebury data-set§2] and found to be
reasonable— examplesof resultsare givenin g. 4a).Importanly suchanalysisgives usefulworking valuesfor



KOLMOGORYV, CRIMINISI, BLAKE, CROSSAND ROTHER MSR-TR-2005-35 5

i .|

linear

H
—>
0
- P /\/”‘
-1 ) ‘ ‘ '~-:~:_v‘v‘,/ 7 M ) -1 LA ) ) i
0 O2mm 04 0.6 0.8 1 0 002 004 006 0.8
a) NSSD b) SSD

Fig. 4. Lik elihood model: the empirical negative-log-likelihoodratio is shawvn for stereomatchesplotted here (a) as
a function of the NSSD measure , using the groundtruth stereodatafrom three of the Middlebury datasets[2]
(“cones”,“teddy”, and“sawtooth”). Notethe linearity in the region of , Wherediscriminationis mostcritical. The more

commonlyusedSSD measurds also analysedb) but givesa non-linear , which is alsolessconsistentacrossdatasets.
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Fig.5. Sensitvity of the likelihood ratio offset parameter: thevalueof theparameter affectstheerrorratein classi cation
of occlusionsfor the 4-stateDP algorithm describedbelow in sectionlll. Resultsare shovn herefor the “cones” dataset of
gure 4. Thevalue , estimatedby linear tting of the likelihoodratio, gives performancehatis closeto optimal.

, Which turnsout to be quite consistentat around . 2 For the parameter , the dataanalysisyields a value
of approximately0.3. However, we found the discriminatively optimal is usuallya little larger: a typical value
is , andthat value gives bettererror ratesin practice.An exampleof the sensitvity of the parameter
is shovn in gure 5.

As it hasheenmorecorventional[29] in stereato useSSDasa match-costatherthanNSSD,resultsareincluded
alsofor modelledas a function of SSD,in g. 4b). Two issuesarisefrom this. The rst is that an effect of
normalisationis that the -characteristids more consistentacrossdatasetsfor NSSD thanfor SSD. Henceit
is reasonabléo x the functionusedto modelthe -characteristidn the NSSD case whereador SSD adaptvity
would be necessaryThe seconds thatthe linearity apparenfor NSSDis absentffor SSD. Thereforethe statistical
evidencedoesnot supportthe corventionalmodelling of match-costasproportionalto SSD.In factthe data ts an
inversepower model , with  varyingin the range over the Middlebury dataset. With
this non-linearlik elihood, we have found DP stereobasedon SSDto performat comparablesrror ratesto NSSD,
or slightly worse.On balancethe linearity and consisteng of the likelihood for NSSD are reasonswvhy we prefer
to assumeNSSD asthe sufcient statisticfor discriminatingmatchesfrom mismatches.

D. Likelihoodfor colour

Following previousapproacheto two-layersegmentatiorf10], [27] we modellikelihoodsfor colourin foreground
andbackgroundusing Gaussiammixturesin RGB colour space)earnedfrom imageframeslabelled(automatically)

2From monochromecomponentsf the 8 imagesin the Middlebury set, we obtain for patchesasusedin LGC, and
for patchesas usedin LDP.



KOLMOGORYV, CRIMINISI, BLAKE, CROSSAND ROTHER MSR-TR-2005-35 6

from earlierin the sequenceThe foreground colour model is simply a spatially global Gaussianmixture
learnedfrom foregroundpixels, andsimilarly for the backgroundnodel . The combinedcolour modelis then
given by an enegy

(8)

Learningof the global foregroundandbackgrounccolourmodels and  proceedsasfollows. Eachis a mixture
of full covarianceGaussiancomponentsin RGB colourspace,and is learned,at eachvideo timestep,
using 10 iterationsof EM [17], initialised from the mixture in the previous frame. The datais taken from the
previous timestep,labeledas foreground/backgroundrom the output of the segmentationprocesslin the caseof
LGC, the algorithmwill be de ned with respectto one (the left) imageonly, so colour modelsare built from that
oneimage.In the caseof the LDP algorithm, modelsare maintainedindependenthfor eachof the left andright
images.The total enegy for colour is taken as:

9)

wherethe colour discountconstant (typical value ) is includedto tunethe balanceof in uence betweerthe
stereomodelandthe colourmodel.In principle,the generatie derivation of the enegiesshouldhave balancedhem
already In practice,the pixelwise independencassumptionguilt in to the colour modelrendersthe in uence of
colourexcessvely strong,andchoosinga value discountdfor that. Colour modelsareinitialised by switching
themoff at time by settingthe weight , andthen switchingit to its nal valueat time . (A more
progressie stratgly might seemreasonablebut is found in practiceto be unnecessary

E. Contrast modeland gur al continuity

Thereis a naturaltendeng for segmentationboundariesn imagesto align with contoursof high contrastand
it is desirableto representhis as a constraintin stereomatching. This can be achiesed by adjustingthe prior
penalties associateavith sggmentatiorboundariesabatingthemwherethereis evidencefrom imagecontrast.
This is relatedto the very well known themesin image-sgmentationof “line processes]21], “weak constraints”
[9] and anisotropicdiffusion [26]. In a recent,particularly effective modelfor binary segmentation[10] a penalty
is associatedvith boundaries,and abatedby a discountfactor that dependsmonotonically on image contrast.
Simplerversionsof suchcontrastmodelshave beenusedpreviously in sterecalgorithms[11], [23] to favour gural
continuity. Fromthe probabilisticpoint of view, the combinedpenaltyanddiscountseemdo obscurethe separation
betweenprior distribution and likelihood. However it has beenshaown, at leastfor binary segmentation,that a
consisteninterpretationof segmentation-priorand contrast-likelihood doesexist [8].

Here we de ne a discountedpenaltyfor the stereomatchingproblemasan imageenegy of the form

(10)

where areneighbouringpixel-pairsin the cyclopeanmage.Thefunction is the clique potentialcoefcient
de ned earlierin sectionll-B. The exact form of is different for LDP and LGC, andit is given later in
correspondingsections.Generally it hasthe effect of applying a penalty at boundarieswherethe statechanges
between . Theterm s the contrastsensitve discountto the boundarypenalty (10):

— (11)

where is a Gaussiarsmoothinglter atthe (approximatelyNyquistscaleof  pixels, is the Euclidean
distancebetweempixels and , ameancontrastover all neighbouringpairs
of image pixels. The constant is a “dilution” constantfor contrast,previously [10] setto for pure colour
segmentation.Here, seemsmore appropriate— diluting the in uence of contrastin recognitionof the
increasedliversity of segmentationcues,and mild supportingevidencefor this is given later.
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Fig. 6. State spacefor stereo matching with occlusion.Matchedandoccludedstategeachin left andright forms) make up
a 4-statesystem.Successie pixels alonga cyclopeanepipolarline ( g. 3) incura costincrement(e.g. ) for thearc
traversed,plus an increment(e.g. ) for the new node .

1. LAYERED DYNAMIC PROGRAMMING (LDP)

The LDP algorithmsolvesfor disparity over individual scanlineson the (virtual) cyclopeanimage . It is based
on the classicdynamicprogrammingapproach13], [25], togetherwith augmentatiorof the statespaceto handle
occlusionby meansof the “4-state” model [15]. As a generalcomment,it is worth acknavledging at this point
that DP restrictedto scanlinesobviously cannotperform exact inferenceon the model as setout in the previous
section,asthereis no explicit imposition of constraintsbetweenepipolarlines. This is one of the advantagesof
the alternatve LGC algorithm, describedn the next section,which doesfully integrate constraintsNonetheless,
in DP thereis someimplicit transferof informationacrossscanlinesin that the patchesusedto de ne the stereo-
matchinglikelihood (sectionll-C) in adjacentepipolarlines do overlap, so that the evaluatedlikelihoodswill be
someavhat correlatedin adjacentlocationson adjacentepipolarlines. As previous studieshave shavn [15] this
implicit imposition of constraintsis quite successfulin reducingstereolabelling artefacts. Further reduction of
epipolarartefactsis encouragedby imposingthe gural continuity constraintdescribecearlierin sectionll-E, given
that edgefeaturestend naturallyto be coherent.

This sectionsetsout the Markov model underlying the LDP algorithm. First the 4-statemodel for stereois
reviewed in sectionlll-A. To achierze sggmentation,foreground/backgroundtatesare then addedto the 4-state
model, togetherwith colour/contrasenengy, to arrive at a new 6-statemodel, which is describedn sectionlll-B.
In summaryit is de ned by an enepgy function composedf four terms:

(12)

representingenepies for spatialcoherence/contrasstereolik elihood, disparity-pull and colourlikelihood respec-
tively.

A. 4-statesteieo with occlusions

The 4-statemodelfor stereomatchingis reviewed in this section;its basicstructureis summarisedn g. 6. The
4-statesystemandits transitionshasassociate@negy termsthat de ne a global enegy

(13)
where , in which  denotesa stereomatchand an occlusion.Each term consistsof the
sum

(14)
of a statecost , inside nodeson the diagramof g. 6, anda cost of transition (on arcs).
The occluding state is split into two sub-stateqgred circlesin g. 6), left-occludingand right-occluding

(which do not intercommunicatete ecting geometricconstraints).The matchingstate also hasleft and
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right substateggreencirclesin g. 6). The typical progressof a matchingpath then alternateshetweenleft and
right, asin gure 3. In both casesmatchedandoccluding,handedness canbe computeddirectly from disparity
asfollows:

(15)
Thereareatotal, then, of 4 possiblestates: L-match, R-match,L-occ, R-occ . Match costsinside nodesare
de ned in termsof matchlikelihood enegy de ned earlier (6), so that:
(16)
with calculatedfrom disparityasin (1).
The prior model over matching paths (sectionll-B) is expressedin terms of a numberof parameters

(gure 6). It might seemproblematicthat so mary parametersieedto be set,but in factthey
canbe learnedfrom previous labelledframesas follows:

(17)

where and arethe meanwidths of matchedand occlusionregionsrespectiely. This follows simply from
the fact that is the probability of escapefrom a matchedstate,and similarly for from an
occludedstate. Then consideratiorof viewing geometry(detailsomitted) indicates:

(18)

where is a nominaldistanceto objectsin the sceneand s the interoculardistance(camerabaseline).Lastly,
probabilisticnormalisationdemandshat

so the numberof independenparametersn is reducedto three: , and .

B. 6-statestereo with occlusionand layers

Next, we distinguishforegroundandbackgroundayersand usean extended6-statealgorithmin which matched
statesfrom the 4-statesystemare split into foreground and backgroundsubstatesThe diagramof g. 6 is cut
by the splitting of the matchedstatesto give a total of 6 possiblestates: L-match-F R-match-F L-match-
B, R-match-B,L-occ, R-occ . Thisis re ectedin the topology of the extendedstate-spacdiagramof g. 7 which
has6 possiblestates: L-match-F R-match-F L-match-B, R-match-B,L-occ, R-occ , with costs of
transition on arcsand statecosts inside nodes,as before. The modelhasa numberof parameters

all of which canbe setfrom statisticsandgeometryas before,but now
statisticsare collectedboth for the andfor the conditions.

C. Addingdisparity-pull and colour/contiast fusion
It remainsto addin enepiesfor the colour and contrastlikelihoods.The full enepgy for stereomatching,per
cyclopeanpixel, is now
(19)

where and are respectiely the node and transition enegies from sectionlll-B. The nodal enegy
has been extended, from to , to take accountof additional colour and “disparity-pull”
information, respectrely. The colour enegy term is maintainedas describedearlierin sectionll-D, andwith
one foreground/backgroundnodel pair for eachof the left and right images.The constant to discountthe
strengthof the colour modelis includedas before.This givesa colour enegy term of the form

(20)
where takesthe value or , andis computedasin (15). The disparity-pullenegy

(21)
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Fig. 7. Extended state spacefor foreground/background segmentation.The matchedstateof g. 6 is splitinto a foregound

and a backgroundsubstateNote that from the foregroundstates(yellow circles),only the right occludingstateis accessible,
and from background(blue circles) only the left occluding state— re ecting a neglect, in the interestsof simplifying our

model,of the possibility of foreground/forground occlusion.Modi ed matchcostsnow incoproratedisparity-pulland contrast
effects— seetext for details.

representshe pull of eachlayertowardscertaindisparities asdeterminecdoy the pull-densities

Typically this term pulls the foreground/backgroundayerstowardslarger/smallervaluesof disparity respectwely
Fromthe point of view of Bayesiarmodelling,the termshouldbe considerechsa modi cation of the matching
path prior, to take accountof foreground/backgroundh uence.

Finally, the transitioncomponent from the 6-statemodelis further modi ed to take accountof contrast
(10). This is doneby modifying eachtransitionenegy betweenoccludingandforegroundstateg g. 7) asfollows:
(22)

wherecontrastdiscount  is de ned asbefore(11), but applyingto the left or right imageas appropriate:
(23)

Now the full 6-statesystem,augmentedboth for bi-layer inferenceand for fusion of colour/contrastith stereo
canbe optimisedby dynamicprogrammingas before.Resultsof this approachare shovn belav in sectionV, but
in the meantimethe alternatve LGC algorithmis described This effectively de nes the termsfrom section
lI-E. At this point all prior andlikelihood parametergor the LGC model have beende ned.

IV. LAYERED GRAPH CUT (LGC)

LayeredGraphCut (LGC) determineseggmentation astheminimumof anenepgy function , in which,
unlike LDP, stereodisparity doesnot appearexplicitly. Instead,the stereomatchdistribution (4) in sectionll-C
is maginalisedover disparity aggreating supportfrom eachputatve match,to give a likelihood for
eachof the threelabel-typesin : foreground,backgroundand occlusion( ). Segmentationis thereforea
ternary problem, and it can be solved (approximately)by iterative applicationof a binary graph-cutalgorithm,
augmentedor a multi-label problemby so-called -expansion[11]. Thusthe LGC algorithmis an alternatve way
of implementingthe colourstereofusion idea, that turnsout to be very effective. A particulardifferencebetween
LDP andLGC is that,giventhatit doesnot explicitly solve for stereadisparity LGC is mostcorvenientlyspeci ed
with respectto one (e.g. left) image,ratherthanin the cyclopeanframeasin LDP.

The enepgy function for LGC is composedf threeterms(cf. 4-termenegy (12) in sectionlll for LDP):

(24)
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a) colour b) stereo (F vs.B)
Fig. 8. Colour and stereo log-likelihood ratios in LGC. If avalueis positive, it is shavn in the red channel,otherwiseit
is shavn in the blue channel.(a) . (b) . Resultsfor sequenceAC at
frameO.

representingnepiesfor spatialcoherence/contrasiterealikelihoodandcolourlikelihoodrespectiely. The colour
enegy is simply a sumover pixels, asbefore(9), but now over the left imageonly:

(25)

of the colourenegy de ned earlier(8), with the adjustmentactor asbefore.Typical color likelihoodsare shovn
in Fig. 8a.

The coherence/contrashegy is a sum,over cliques,of pairwiseenegiesof the form (10) in section
lI-E, but with the potentialcoefcients now de ned asfollows. Cliquesconsistof horizontal,vertical and
diagonal neighbourson the squaregrid of pixels. For vertical and diagonalcliquesit acts as a switch actve
acrossa transitionin or out of the foreground state: if exactly one variable equalsF, and

otherwise.Horizontal cliques, along epipolar lines, inherit the samecost structure,except that
certaintransitionsare disalloved on geometricgrounds.Theseconstraintsare imposedvia in nite costpenalties:

The constant is broadlyrelatedto and in the LDP model,so a reasonablavorking valuefor is

- (26)
wherewidth parameters  and werede ned earlier (17).

A. Marginalisation of stereo likelihood

The remainingterm in (24) is which capturesthe in uence of stereomatchinglikelihood on the
probability of a particularsegmentationlt is de ned to be

(27)

(28)

(29)
— mamwinalizing over disparity andthe distributions for are x edto disjoint uniform
distributions, and . (Alternatively, at leastfor LDP, the distributions
could be learnedadaptvely using labelleddatafrom previous frames.)The termin (28) allows us to make
useof the likelihood-ratiomodel of sectionll-C for stereomatchesgiving

(30)

Typical stereolikelihoodsare shovn in Fig. 8h.
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a) F-expansion b) O-expansionregion ¢) O-expansion

Fig. 9. One iteration of the expansionmove algorithm in LGC. Con guration is initialized with for all pixels,
then subjectedo F-expansionto give (a). (b) O-expansionis restrictedto a region closeto B-F transitions,shovn shadedto
give the nal result(c), in which the O-labelis shovn in green.(Resultsfor sequenceAC at frame0.)

B. Expansionmove algorithm

Currently graphcut basedstereoalgorithmstechniquesuchas[10], [23] arenot suitedfor real-timeimplemen-
tation. The main reasonis thatthey perform alphaexpansionoperationgbinary graphcuts), where
is the numberof possibledisparities.Having mamginalizedover disparities,we areleft with just threelabelswhich
is a substantiabaring. In addition,the ternaryexpansionmove algorithmcanbe implementedpracticallyat a cost
of a single graphcomputationby taking advantageof the structureof our problem.

First, we have obsenred that resultsafter one iteration of the expansionmove algorithm are very closeto the
resultsachievedat corvergence This is not surprisingconsideringhatthe numberof labelsis small. Therefore pnly
oneiteration,involving two graphcut computationsis neededWe initialize the segmentatiorwith for all
pixelsandthenrun F-expansionandO-expansion(see g. 9). Secondjn the O-expansionoperationit sufces to add
nodesonly for a small fraction of all pixels. Indeed,dueto the geometricconstraintsO-expansioncannotchange
pixelsin scanlineghat do not containB-F type transitions.Furthemorejt happenghatthe segmentatiorboundary
found after F-expansionnormally lies in the real occludedregion locatedto the left of foregroundobject. Therefore,
it is reasonabléo performO-expansionoperationonly for pixelswithin distance from B-F transitiong( g. 9b).

Resultsof segmentationusing LGC and LDP are givenin the next section.

V. RESULTS

Performancef the LGC andLDP algorithmswas evaluatedwith respecto ground-truthsegmentationson every
fth frame (left view) in eachof two teststereosequences The datawas labelledmanually labelling eachpixel
as backgroundforegroundor unknavn. The unknavn label was usedto mark mixed pixels occurringalonglayer
boundariesError is then measureds percentagef misclassi edpixels, ignoring “unknown” pixels.

Prior parameters for LDP: Prior parameterdgor LDP are setasin sectionlll-A, equations(17) and (18),
with the samevaluesfor foregroundandbackgroundparametersi.e. and etc. Regionswidths in equations
(18) and(17) are setto pixels and pixels, andtypical valuesfor objectdistanceand baseline
are mm and mm.

A. Determinationof LGC parametes and their sensitivity

The rst setof experimentswith the LGC algorithm, are shovn in gure 10. Parameters , , and are
varied, one at a time, aroundtheir default values , , and . Resultsare summarised
for eachparametein turn.

Lik elihood offset parameter , introducedin sectionll-C, giveslow error ratesover a range
. Note that is the value obtainedgeneratiely, i.e. from likelihood tting in section

3Groundtruth segmentationdatais publicly available[1].
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Fig. 10. Effect of valuesof LGC parameters , , and on seymentationerror rate,for eachof 6 test-datasets— see

text for detaileddiscussion.The default value of eachparameteiis indicatedby an arronv on the abscissaaxis.

[I-C. The value is very slightly superiordiscriminatvely — i.e. it gives lower error rate in
gure 10.
Coherenceconstant for LGC, de ned in sectionlV, giveslow error ratesfor . Notably this
is far smallerthanthe optimal value for sgmentationusingcolour/contrasbnly [27]. Presumably
the presencef the additionalcuefrom sterecto someextenttakesover therole of coherenceThe default
value,from equation(26) in sectionlV, andtaking pixelsand pixels asbefore,gives
which is entirely consistentwith the experimentalresults.
Colour discount constant , de ned in sectionll-D equation(9), gives besterror ratesaround :
Without a discount( ) error ratesare appreciablyhigher andthis con rms the needfor a discount
to modify the generatre assumptiorof independencef colour at neighbouringpixels.
Contrast parameter , de ned in sectionll-E, equation(11) to impose gural continuity hasa mild effect
on error rate performance Our default performsa little betterthan either remaoving the contrast
term altogether( ), or settingit at full strength( ) asdonein GrabCut[27].
In all four casesgrror rate performancds seento be quite robust as parameteryary aroundtheir default values.
Pixelwisebadground model: We further experimentedwith an extensionto the backgroundmodel of section
II-D, mixing in a probability densitylearnedfor eachpixel, by pixelwise backgroundnaintenancg28], [30], [32].
The learnedpixelwise densities are typically strongly pealed, and hencevery informative, but sensitve
to movementin the background.That sensitvity is robusti ed by addingin the generalbackgrounddistribution
asthe contaminatiorcomponentn the mixture.However, rathersurprisingly experimentshonved nggligible
improvementfrom the extendedbackgroundnodel,presumablybecaus®f the strengthof the othercues.A density
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equallyweightedbetween and decreasederror ratesby just — % acrossthe 6 datasetstested
(seesectionV), comparedwith using alone.Note however that using the pixelwise alone,without
ary componentjncreasecerror ratesby a disastrous %.

B. Error rate reductiondue to fusion of stereo/colour/contast

Segmentationperformancefor the various stereotest-sequencesncluding the AC sequenceof g.1 and ve
others,is comparedor colour/contrastfor stereoalone,andfor colour/contraswith stereofusedtogether(g. 11).
The colour/contrastlgorithmhereis simply LGC in which the stereocomponenis switchedoff. The stereo-only
algorithmis 4-stateDP asin sectionlll-A. Fusionof colour/contrastind stereoby the LGC and LDP algorithms
both shav similarly enhancederformancecomparedwith colour/contrasbr stereoalone.The six testsequences
include one with two subjectsin the foreground (IU-JW') and anotherwith people moving in the background
(IU). Evenin thosedif cult casesthe power of fusing colour/contrasaind stereois immediatelyapparentin fact,
the error ratesshownn for colour/contrastlone are even optimistic, in that colour mapsare trained from ground
truth segmentationsvhereagracticallythey would have to be trainedadaptvely from the imperfectsegmentations
obtainedonline. Note thatwhile LDP andLGC conclusvely achiese betterperformancehan eithercolour/contrast
or stereoalone, neitherof LDP or LGC performsconclusvely betterthanthe other An exampleof a segmented
image from the AC sequenceds showvn in g. 12 togetherwith the spatial distribution of segmentationerrors:
the errorstendto clusterclosely aroundobjectboundariesFinally gure 13 shaws two resultscorrespondingo
high error ratesin the testdataof gure 11. The rst (VK) ariseswherethe subjectshandapproacheshe frame
of the image where stereono longer operatesbecauseof occlusionby the image frame. The second(lU-JW ),
moreinteresting,shawvs slightly overagressie actionof the coherenceconstraintmomentarilygluing two subjects
together

Badkground substitutionin sequences.:Finally, gs. 14-16 demonstratethe application of segmentationto
backgroundreplacementin video sequencegfurther results are available at [1]). Backgroundsubstitutionin
sequencess challengingasthe humaneye is very sensitve to ick er artefacts. Following foreground/background
sgmentation, -matting hasbeencomputedby bordermatting [27] as a post-processthoughpatchbasedpriors
could alternatvely be used[19], [14]. The LGC algorithm gives good results,with blendedboundariesand little
visible ick er; LDP (not showvn) givesvery similar looking results.

V1. CONCLUSION

This paperhasaddressedhe importantproblemof segmentingstereosequencesisparity-basedsegmentation
and colour/contrast-basesggmentationalone are proneto failure. We have demonstrategropertiesof the LDP
and LGC algorithmsand underlyingmodel asfollows.

LDP andLGC arealgorithmscapableof fusing the two kinds of information,togetherwith a coherenceprior,
with a substantiatonsequenimprovementin segmentationaccurag.

Fusionof stereowith colour and contrastcan be capturedin a probabilisticmodel,in which parametercan
mostly be learned,or are otherwisestable.

Fusionof stereawith colourandcontrasimakesfor morepowerful sgmentatiorthanfor sterecor colour/contrast
alone.

Good quality segmentationof temporal sequencegstereo)can be achieved, without imposing ary explicit
temporalconsisteng betweenneighbouringframes.The subjectve effect of temporalartefctsis visible but
not too obtrusve — seeresultsmovies[1]. Temporalartefictsin stereocanbe alleviatedby explicit temporal
modelling andinference[34], but currently this is too expensve computationallyfor a real time system.

Given that the sggmentationaccuracieof LDP and LGC are comparablewhat is to choosebetweenthem?In
factthe choicemay dependon architecturethe stereocomponenf LGC canbe done,in principle, on a graphics
co-processolincluding the marginalisationover disparitiesIn LDP however, althoughstereo-matclscorescould be
computedwith the graphicscoprocessgrcommunicatinghe entire costarray to the generalprocessor
is beyond the bandwidthlimitations of current GPU designs.On the other hand LDP is economicalin memory
usage,n thatit canproceedscanlineby scanline.Both the LDP andthe LGC algorithmsare capableof real time
operationon a corventionalprocessarFastimplementation®f DP techniquesarewell known [13], [16]. Ternary
graphcut hasbeenapplied,in our laboratory at around1.5 M-pixels/seconan a 3GHz Pentiumdesktopmachine.
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Therearesomeotherimportantdifferencesetweenthe algorithms.First, the LDP algorithm produceghe entire
stereodisparity map as a bi-productof segmentationwheread GC deliversthe segmentationalone. This favours
LDP in applicationssuchas cyclopeanview generationfor which the full disparity mapis neededn additionto
the occlusionmap. Another interestingdifferenceis that wherethe constraint gural continuity, capturedby the
contrastterm of sectionll-E, makes only a maginal differenceto LGC performance( gure 10), it profoundly
improvesthe performanceof LDP (detailsof experimentsomitted). This may be becauseddynamic Programming
dealsindependentlywith eachepipolarline, andthe gural continuity constraintof [10] overcomeghat limitation
by providing anindirect but effective linkage betweennearbyepipolarlines.
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Fig. 11. Segmentation performance advantage from fusion. Segmentationerror (percentageof misclassi ed pixels) is
computedon all six sequencedrame by frame,for LDP, LGC, colouronly andstereoonly. Error barsare alsoshavn, on the
right of eachplot, for temporalmeanand standarderror. Note that fusedstereoand colour/contras{LGC and LDP) perform

substantiallybetterthan either stereoor colour/contrastlone.
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LDP LGC

Fig. 12. Extracted foreground layer (top) for the left view of sequenceAC frame 100, for LGC and LDP. Segmentation
error maps(bottom).

subjectVK frame 61 subjectlU-JW frame 31

Fig. 13. LGC Segmentationerror illustrations. We shov heretwo resultscorrespondingo high error ratesin the testdata
of gure 11. Sgmentedforegroundis shovn highlighted.

LGC, frameO LGC, frame100

Fig. 14. Segmentationand background substitution. Here we shav backgroundsubstitution(using LGC) for two frames
of the sequencC
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Fig. 15. Segmentationwith non-stationary background. (Top) Four framesof the input left sequencesequencdU (right
frame not showvn here). (Bottom) Corresponding-GC segmentationand backgroundsubstitution.LDP performssimilarly.
Note the robustnessof the sggmentationto motionin the original background.

Fig. 16. Non-stationary background with more complex foreground. A nal example of segmentationand background
substitution(testsequenceé3). (Top) Input left images.A third personis moving in the original background(Bottom) LGC
background-substitution.



