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Abstract
This paper presents a new linear method for reconstruct-

ing simultaneously 3D features (points, lines and planes)
and cameras from many perspective views by solving a sin-
gle linear system. It assumes that a real or virtual reference
plane is visible in all views. We call it the Direct Reference
Plane (DRP) method. It is well known that the projection re-
lationship between uncalibrated cameras and 3D features
is non-linear in the absence of a reference plane. With a
known reference plane, points and cameras have a linear
relationship, as shown in [16]. The main contribution of
this paper is that lines and cameras, as well as, planes and
cameras also have a linear relationship. Consequently, all
3D features and all cameras can be reconstructed simulta-
neously from a single linear system, which handles missing
image measurements naturally. A further contribution is an
extensive experimental comparison, using real data, of dif-
ferent reference plane and non-reference plane reconstruc-
tion methods. For difficult reference plane scenarios, with
point or line features, the DRP method is superior to all
compared methods. Finally, an extensive list of reference
plane scenarios is presented, which shows the wide appli-
cability of the DRP method.

1 Introduction
Reconstruction from multiple perspective views of a

static scene has been the subject of research for more than
a decade in the field of computer vision (see [5, 3]). Many
different techniques for features like points, lines and planes
have been suggested. Most existing methods are based on
the so-called camera or matching constraints, which involve
cameras and image measurements [1, 4, 9, 12]. These meth-
ods reconstruct the scene incrementally by considering a
limited number of 2, 3 or 4 views at a time. A less popular
approach is to reconstruct the scene using the dual structure
constraints [20]. The class of factorization methods com-
pute simultaneously the scene and motion parameters from
a measurement matrix [24, 22, 13]. This approach has the
major drawback that missing image measurements have to
be hallucinated [10]. We will show experimentally that for
certain, difficult scenarios all examined camera constraint
and factorization methods fail. Our aim is to reconstruct

large scale scenes from a small set of wide baseline images.
Naturally, the amount of missing image data is very high.

In order to reconstruct such scenarios, we exploit an ad-
ditional source of information, a reference plane. The cam-
era and structure constraints for �� � and � views with a
known reference plane are well understood [7, 8, 2, 5, 25,
6, 19]. Hartley et al. [6] presented a linear reconstruc-
tion method for points. It exploits the fact that the cam-
era constraints are linear in the unknown camera parame-
ters. An extension of this approach to line features is ex-
amined in this paper. Camera constraint methods for planes
were discussed in [23, 18]. All the camera constraint ap-
proaches have in common that the 3D structure and cameras
are reconstructed separately. A reference plane factoriza-
tion method for points, lines and planes was suggested by
Triggs [25]. The drawbacks of this method is that it is only
applicable to finite reference planes, 3D points on a line
have to be known and missing data has to be hallucinated. In
[16], a different approach for point features was presented.
It is based on the observation that 3D points and cameras
have a linear relationship. Consequently, all points and all
cameras may be reconstructed simultaneously from a single
linear system, using a minimum amount of image measure-
ments. We will demonstrate experimentally, that for diffi-
cult scenarios, with the plane at infinity as reference plane,
this approach is superior to previously suggested reference
and non-reference plane methods [6, 18, 24, 1, 4, 13].

In this paper we will extend the linear approach in [16]
to line and plane features. The main contribution of this pa-
per is that 3D lines and cameras, as well as, 3D planes and
cameras have a linear relationship, if a reference plane is
known. In general, this relationship is non-linear. We ex-
ploit the fact that the direction of a 3D line and 3D plane,
i.e. its normal, can be computed directly from the image
data. Consequently, a 3D line can be represented by only �
parameters (4(6) in general) and a 3D plane by only one pa-
rameter (3(4) in general). Due to the linear relationship, all
3D features (points, lines and planes) and all cameras can be
reconstructed simultaneously from a single linear system.
We call it the Direct Reference Plane (DRP) method. Note
that for line features, it is not assumed that 3D points on a
line are known. An approach, similar to the DRP method,
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Figure 1. The projection of a 3D line�, represented
by the two points� and ��.
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Figure 2. The � planes��� ���� must intersect in
the 3D line � with direction �.

was suggested in [21] where, however, the 3D structure and
cameras are not determined simultaneously. This paper is
based on the recently published PhD thesis [19].

2 Reference plane geometry: Linear rela-
tionship of 3D features and cameras

In the following, we investigate the projection relation of
a 3D feature (point, line and plane) and an uncalibrated, per-
spective camera with the additional assumption of a known
reference plane. We show that this relationship, which is in
general non-linear, becomes linear in an affine space where
the reference plane is the plane at infinity.

2.1 Points

Let us briefly review the point case, discussed in [16].
The projection of a 3D point � onto the 2D image point �
is in homogeneous coordinates

� � � � � � � ���� � � � �� � ���� (1)

where � � ��� � � ��� represents the projection matrix of
the camera with center ��. Non-homogeneous and homoge-
neous coordinates are distinguished by a bar and “�” means
equality up to scale. Consider the homography � . A point
� � ����� �� ��� , which lies on the plane at infinity ��,
is mapped by eqn. (1) onto the image plane as

� � � ����� ��� � (2)

Therefore,� can be considered as the infinite homography,
in the following denoted ��, between the plane at infinity
�� and the image plane.

In a projective setting, any (reference) plane may serve
as the plane at infinity. Knowing a reference plane, real or
virtual, is therefore equivalent to knowing the infinite ho-
mography. For simplicity, we stabilize the reference plane
in the image, assuming that �� is non-singular:

������� � �� ��� � �� � �� � (3)

In the following, ������� is denoted �. The stabilized image
corresponds to a calibrated, translating camera, i.e. � �
�� �� ���. The unknown scale in eqn. (3) may be eliminated
by taking ratios, which gives

�	 �� � 
 �� � 	 ��� 
 �� � �

� �� � 
 �� �  ��� 
 �� � �

� �� � 	 �� �  �� � 	 �� � � � (4)

where � � �
� 	� �� , �� � � ��� �� � ���� and �� �
� ��� ��� ���� . These are � linear constraints for the non-
homogeneous point �� and camera center ��. Note that only
� constraints are linearly independent. This was exploited
in [16] to reconstruct multiple points and cameras simulta-
neously from a single linear system.

2.2 Lines

In the following, two different linear constraints are de-
rived, depending on the representation of a 3D line.

First, a 3D line � is represented by two arbitrary, but
different, 3D points���� (fig. 1). Assume that the image is
stabilized, i.e. the image line � is � � �� � �. The condition
that the image points ���� lie on � may be written as

�� � � � and ��� � � � � (5)

Inserting eqn. (3) into eqn. (5) gives

��� �� ��� � � � and ���� �� ��� � � � � (6)

These are two linear constraints for the unknown line pa-
rameters ( ��� ���) and camera parameters ( ��). Since two 3D
points (	 degrees of freedom) over-determine a 3D line (�
degrees of freedom), two additional constraints are needed
to specify the two points ��� ��� uniquely. To reconstruct a
3D line from multiple views, the additional point constraints
in eqn. (4) may be used, derived from the two endpoints of
the line segment in one view.

We derive now linear constraints for a minimal line rep-
resentation. The line � is uniquely defined by the two
planes � � ��� ��� ��� � ���� ���� (fig. 2). We first show
that the plane normals ���� can be derived, given the plane
at infinity (reference plane). The direction of a 3D line may
be determined from the stabilized image lines � � of multiple
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Figure 3. The points ���� ���� ��� define uniquely
the plane�. Two stabilized images �� � are shown
on the right.

views (see [5] page ���). All �� have to intersect in one point
�, the vanishing point ��� ��� of�. Therefore, the direction
� is the 
-dimensional null-space of the linear system

���� � � � �
�
	 �

� � � � � (7)

Given �, the plane normals ���� can be derived from the
�-dimensional null-space of ��� � �. Consequently, the
remaining unknowns of the planes ��� �, i.e. (�� ��), are a
minimal representation of the line �. Consider the projec-
tion constraints for �. The condition that � projects onto
� means that the � planes �� , � and �� intersect in �
(see fig.2). The algebraic equivalent is that the � � � ma-
trix � � ��� � ��� must have rank �. The plane �� is
� � � � ���� ��� ��� , using � � �� �� ���. Since� has rank
�, the � sub-determinants of size ��� have to vanish. Those
sub-determinants which involve unknown parameters are

������
�
 �
 ��

�� �� ���

� ��� � � ��

������
� � �

������
�
 �
 ��

�� �� ���

� ��� � � ��

������
� � �

������
�� �� ���
�� �� ���

� ��� � � ��

������
� � � (8)

where ��
�� � ��

���

 � �

���
� � �

���
� �� and ���� � ��

���

 ��

���
� ��

���
� �� .

As above, the � constraints (� linearly independent) are lin-
ear in the unknown camera parameters �� and line parame-
ters (�� ��). An alternative derivation using Plücker line co-
ordinates gives equivalent constraints (see [19]).

2.3 Planes

Consider a 3D point�which lies on the plane� � ��� ���

and is visible in two views �� � as ���� . The image points
are related by the homography � � as � � ���� (see
[5]). For stabilized images, the corresponding homogra-
phy is �� � ����

 ���
�

� . Given the homography, there
are in general two options to reconstruct the planar scene.
Either use the homography directly or “hallucinate” image
features, e.g. points, on the plane (see [23]). Our method
belongs to the first class and is based on linear constraints
involving plane and camera parameters. For stabilized im-

ages, the following relationship holds (see [23])

�� � �
�
� � ��� ��� � ���� � �� � ���� �

�
�
� (9)

The unknown scale � may be determined directly from the
homography �� , as we will explain. Eqn. (9) may be
rewritten as

�� � ����� � � � ��� ��� � ���� � �� � ���� �
� � (10)

Since the matrix �� has rank 
, �� has the double eigen-
value �. This was previously shown in e.g. [11] and relates
to the fact that �� is a planar homology (see [2]).

As with 3D lines, the orientation of the plane, i.e.
its normal �, can be derived given the plane at infinity.
Fig. 3(left) shows � finite points ����� defining the plane�.
The vanishing points ������

� � ������
� of the lines �� �

���������� � ������� are given as (see fig. 3(right))

�� � ���� � ����� ��� � ���

�� � ���� � ����� ��� � ��� � (11)

Consequently, the plane’s normal is � � �� � ��. In prac-
tice, we hallucinate many points to compute � stably.

Given � and �, the remaining unknown plane parameter
is �. Eqn. (10) may be rewritten as the following � con-
straints
���������� � ��� � ����������� � ����������� � ����� � ����� � �

����������� � ���������� � ��� � ��� �������� � ����� � ����� � �

����������� � ����������� � ���������� � ��� � ����� � ����� � �

����

for � � 
� �� �, �� � ����� and ��� � � ���� ���� ����
� .

These constraints are linear in the unknown plane parameter
(�) and camera parameters ( ���� ��). It can be shown that
only � of the � equations are linearly independent.

3 Outline of the DRP Method
The Direct Reference Plane (DRP) method for recon-

structing multiple 3D features and cameras consists of the
following � steps:

1. Determine a reference plane, i.e. homography��

2. Compute the directions (orientations) of lines and planes
3. Recover all features and cameras from one linear system

For multiple points ���, lines ���� ���� or � ���� ��
�

��, planes ��
and camera centers ���, the linear system takes the form

�
��������

formed from eqns. (4)
...

formed from eqns. (8)
or eqns. (6) and eqns. (4)

...
formed from eqns. (12)

�
��������

�
������������

���

...
�� or ���

�
�

� or ���

�

...
��
...
���

�
������������

� � � �
��



Real or Virtual Reference Plane Scenarios Reconst.

Real scene plane projective
	 mutually orthogonal scene directions metric

Additional orthographic “over”view (map) metric
Calibrated cameras with known/constant rotation metric

Translating camera with constant calibration affine
Affine cameras + 	 points in all views affine

Known epipolar geometry + 	 points in all views projective
Small image baseline projective

Table 1. Various reference plane scenarios.

The null-space of the linear system is �-dimensional (see
[17]). Therefore, the sum of the � singular vectors of the
null-space provide the complete reconstruction. The main
advantages of the DRP method, in contrast to iterative meth-
ods, like [1, 4], and factorization methods, like [24, 22, 13],
is that all 3D features and cameras are reconstructed si-
multaneously using a minimum amount of image measure-
ments. We denote the DRP method for single feature types
Point-DRP, Line-DRP and Plane-DRP method respectively.
The DRP method which uses a minimal line representation,
i.e. ��� ���, is called Line-DRP(min).

It is well known that a reference plane, i.e. the infi-
nite homography, may be derived for scenes without a real
plane. Table 1 lists many known reference plane scenarios
(see [19] for details). The list shows the wide applicability
of the DRP method. We point out that for some scenarios
iterative (sub-optimal) methods were suggested in the past,
e.g. for translating cameras with constant calibration [26].
The case of an additional map was recently presented in
[15]. The assumption of affine cameras or known epipolar
geometry was discussed in [17]. Oliensis [14] exploited a
small baseline to simplify the reconstruction problem.

Finally, we mention an important practical issue. The
linear eqns. (4), (6), (8) and (12) are only valid for 3D fea-
tures and camera centers outside the reference plane. This
is not an issue if the reference plane is at infinity. Indeed,
all scenarios in table 1 which give an affine or metric recon-
struction have this property1. For finite reference planes,
features on and off the plane have to be separated (see [17]).
Further, minor issues, omitted here (see [19]) are normal-
ization of image features, weighting of the linear system in
eqn. (13) and a dealing with a singular infinite homography.

4 Experiments
We are interested in reconstructing complex, large scale

objects, e.g. buildings, from a small set of of images with
a wide baseline. Such scenarios are very different to recon-
structing objects from a continuous image sequences, since
the amount of missing image measurements is high (up to
90%). In the following, we present only real data experi-
ments. Further experiments using real and synthetic data,

1An exception are affine cameras and � common points (see [19]).

infinite and finite reference planes are in [19]. For point and
line features, the real plane at infinity served as the reference
plane. It is derived from � mutually orthogonal scene direc-
tions and the assumption of a square pixel camera (see table
1 and [16]). To compare the DRP method with other meth-
ods, the different feature types are considered separately.

4.1 Points
For point features, our method (Point-DRP) is compared

to the following � methods. The Point-Fmat method in [4]
merges subsets of views in an optimal fashion. A bundle
adjustment is carried out after each merging step. The al-
gorithm is initialized by computing all possible subsets of
� views, which is feasible for wide-baseline images. The
Point-ResInt method in [1] is based on the “intersection-
resection” scheme, where bundle adjustment is carried out
after each resection step. The recently published projective
factorization method (Point-ProjFac) in [13] extends the
method in [22] for missing data using [10]. The same miss-
ing data algorithm [10] is applied to the affine factorization
method (Point-AffFac) in [24]. The Point-Cam method of
Hartley et al. [6] reconstructs all cameras simultaneously
using a reference plane. In our implementation, all camera
constraints derived from �, � and � views are used simul-
taneously. Note that Triggs reference plane method [25] is
not applicable here since the reference plane is at infinity.

In the first experiment (campus sequence) 
�
 3D points
belonging to � buildings were reconstructed from �� views
(see fig. 4 (a,b)). The visibility matrix in fig. 5(b) shows
that only 
�� of the image data is available (black dots).
The accurate reconstruction of the Point-DRP method with
a superimposed map is depicted in fig. 5(a). Points are dots
and cameras as arrows. Fig. 6(a) depicts the RMS repro-
jection error after applying the different methods. Only the
two reference plane methods (Point-DRP, Point-Cam) could
reconstruct this scenario. For � methods (ResInt, ProjFac,
AffFac) the amount of image data was too little. For fur-
ther comparison, we “synthesized” the campus sequence.
This means that the reconstruction in fig. 5(a) was taken
as “ground truth”. Fig. 6(b) shows the 3D error (approx.
in meter) depending on Gaussian noise on the image points
(before bundle adjustment). The 3D error is measured after
aligning the obtained reconstruction with the ground truth
in an optimal way. The Point-Fmat method could only re-
construct the scene in the case of no noise. Furthermore, the
Point-DRP method is superior to the Point-Cam method.

In the next experiment (house sequence), a house is re-
constructed from � views (fig. 4 (c, d)) and ��
 automat-
ically matched image points. The visibility matrix in fig.
7(a) has 	�� missing data. Fig. 7(b) illustrates the 3D re-
construction using the Point-DRP method. Fig. 8(a) shows
that only the reference plane methods and the Point-ResInt
method achieved a reconstruction with a small RMS error.
The metrically rectified 3D reconstruction using the Point-
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Figure 4. Two views of the campus sequence (a,b) and the house sequence (c,d).

ResInt method is depicted in fig. 7(b). The result is bad,
i.e. the non-linear optimisation got stuck in a local mini-
mum, far from the global minimum. The difficulty of this
scenario is that certain subsets of views observe a dominant
scene plane, which is a critical configuration. That is the
reason for the failure of the iterative Point-Fmat method. In
[12], strategies to overcome this problem were suggested.
Note that the set of critical configurations is very small in
the reference plane case (see [19]). Fig. 8(b) shows the per-
formance on the synthetic house sequence. For a noise level
of more than ��
, all non-reference plane methods failed.
Both reference plane methods performed equally good.

We may conclude that for difficult scenarios, non-
reference plane methods might fail due to (a) too few im-
age measurements are available, (b) error accumulation due
to noisy image measurements or (c) critical configurations
(like a dominant scene plane).

4.2 Lines

For line features, we compare the following � methods.
In sec. 3 we introduced the Line-DRP method, which rep-
resents a 3D line by two 3D points, and the Line-DRP(min)
method, which uses a minimal line representation (�� � �).
Furthermore, we extended the Point-Cam method in [6] for
line features (Line-Cam). This is possible since the camera
constraints for lines in � and � views are linear if a reference
plane is known (see [19]).

We reconstructed the house (fig. 4(c,d)) from �� man-
ually selected line segments. The amount of missing line
features is ���. Fig. 9 (a,b) shows two views of the recon-
struction using the Line-DRP method. For comparison, fig.
9 (c,d) depicts the result of the Point-DRP method using the
endpoints of the line segments. This result is qualitatively
better. This can be expected since 3D points provide more
geometric constraints than 3D lines. Fig. 10(a) shows the
RMS reprojection error using various methods. The RMS
error is based on the endpoints of the line segments, de-
termined by intersection. Although the line-based methods
performed worse, the errors are identical for all methods af-
ter bundle adjustment. Fig. 10(b) depicts the performance
on the synthetic house sequence, i.e. the 3D reconstruc-
tion in fig. 9 (c,d) was taken as ground truth. As in the
real data case (fig. 10(a)), the Line-DRP method is superior
to other line-based methods. A potential drawback of the
Line-DRP(min) method is that the line directions are com-

puted separately in a pre-processing step.
We may conclude that point-based methods are signif-

icantly superior to line-based methods. Furthermore, the
Line-DRP method was the best line-based method for this
scenario (with an infinite reference plane).
4.3 Planes

As discussed in sec. 2.3, planes may be reconstructed
directly, given the homographies, or by “hallucinating” im-
age features, e.g. points. In the following, we compare
our Plane-DRP method with the Plane-Cam method sug-
gested in [18]. Both methods use the homographies directly.
The Plane-Cam method reconstructs all cameras simultane-
ously from a linear system. Furthermore, we will halluci-
nate point features and reconstruct them with several point-
based methods introduced in sec. 4.1. As pointed out in
[23], it is important to hallucinate point features inside the
image area of the homographies.

We reconstructed 	 planes of a toyhouse from � images
(see fig. 11(a,b)). The homographies were determined man-
ually from point matches. The ground plane served as the
reference plane. Fig. 11(c) shows the reconstruction using
the Plane-DRP method. The 3D points on the planes were
determined by intersection. The RMS reprojection error of
the reconstructed 3D points is depicted in fig. 12(a). Appar-
ently, the “direct homography” methods (Plane-DRP, Plane-
Cam) performed worse than methods using hallucinated
points. In this case, the iterative Point-Fmat method per-
formed best. This might be due to the small baseline and the
non-critical configuration (no dominant plane). Note that
this method performs bundle adjustment after each merging
step. As with lines, the RMS errors of all methods are iden-
tical after bundle adjustment. The result using the synthetic
toyhouse sequence (fig. 12(b)) confirms the conclusions of
the previous, real data experiment.

We may conclude that for this scene, methods which use
hallucinated point features are superior to methods which
reconstruct the planes directly, given the homographies.

5 Summary and Conclusions
This paper presented a novel linear method for reconstruct-
ing simultaneously 3D features (points, lines and planes)
and cameras from multiple perspective views. It assumes
that a reference plane is visible in all views. We call it the
Direct Reference Plane (DRP) method. It extends the point-
based technique in [16] to line and plane features. The main



theoretical contribution of this paper is that lines and cam-
eras, as well as, planes and cameras have a linear projection
relationship if a reference plane is known. This relationship
is in general non-linear. Consequently, all 3D features and
cameras can be reconstructed from a single linear system.
Since the linear projection relations are used directly, the
minimum amount of image measurements is sufficient.

The main practical contribution of this paper is a com-
parison of the DRP method with several reference plane
[6, 18] and non-reference plane methods [24, 1, 4, 13] for
difficult scenarios. We choose to reconstruct large scale ob-
jects, i.e. buildings, from a small set of images with the
reference plane as the plane at infinity. Consequently, the
amount of missing image measurements is high. For point
and line features, only the DRP method and Hartley’s et
al. [6] reference plane method performed successfully. The
failure of the non-reference plane methods had the follow-
ing reasons: (a) too few image measurements, (b) error ac-
cumulation or (c) critical configurations (dominant scene
plane). The reference plane methods circumvent all these
problems. The DRP method was superior to Hartley’s et al.
method before bundle adjustment. The experiments with
planes showed that reconstructing hallucinated point fea-
tures, with the Point-DRP method, gives better results than
reconstructing the planes directly from the homographies.

Finally, we presented an extensive list of reference
planes scenarios (table 1) for which the DRP method is
applicable. We pointed out that for some scenarios itera-
tive (sub-optimal) methods were suggested in the past, e.g.
translating cameras with constant calibration [26].

As described in this paper, the DRP method can recon-
struct all features and cameras simultaneously. In the pre-
sented experiments the three feature types were considered
separately. Experiments with combination of features are
planed. A weighting of the linear constraints, correspond-
ing to the uncertainty of the given image measurements
might be adventurous. Furthermore, all scene constraints
which are linear in the 3D features may be integrated in the
linear system. These constraints are incidence relationships,
e.g. a point lies on a plane, and constraints of known fea-
tures (see [19]). The integration and test of such a method
is the subject of future research.
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Figure 5.Reconstruction of the campus with the Point-DRP method (a) and the visibility matrix (b).
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Figure 6. Results of various point-based algorithms on the real campus sequence (a) and the synthetic campus
sequence (b), before bundle adjustment (grey) and after bundle adjustment (black).
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Figure 7. The visibility matrix of the house sequence (a). Top view of the house reconstruction with the Point-DRP
method (b) and Point-ResInt method (c).
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Figure 8. Results of various point-based algorithms on the real house sequence (a) and the synthetic house
sequence (b), before bundle adjustment (grey) and after bundle adjustment (black).



(a) (b) (c) (d)
Figure 9. Two views of the reconstructed house using the Line-DRP algorithm (a,b) and the Point-DRP algorithm
(endpoints of the line segments) (c,d). The results are before bundle adjustment.
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Figure 10. Results of various line-based algorithms on the real house sequence (a) and the synthetic house
sequence (b), before bundle adjustment (grey) and after bundle adjustment (black).

                        

(a) (b) (c)

Figure 11. Two images of the toyhouse sequence (a,b). Top view of the reconstruction of the toyhouse using
the Plane-DRP method (c). The dashed lines mark the toyhouse.
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Figure 12. Results of various plane-based algorithms on the real toyhouse sequence (a) and the synthetic
toyhouse sequence (b), before bundle adjustment (grey) and after bundle adjustment (black).


