BrainDump: An Interface for Visual Information-Gathering during Web Browsing Sessions

Marius Brade, Joerg Heseler, Rainer Groh
Chair of Media Design
Technische Universität Dresden
01062 Dresden, Germany
+49 351 463 37927
marius.brade@tu-dresden.de, joerg.heseler@gmx.de, rainer.groh@tu-dresden.de

ABSTRACT
In this paper a software prototype called BrainDump is described. The approach is focusing on information gathering during web browsing sessions. While performing such a task, the structure and amount of needed data is not known in advance. The system provides the functionality to create and manipulate visual images of mental connections in a dynamic way. Therefore only one single step of interaction is needed. Furthermore the user can follow links back to the source of information, annotate content and hierarchically group collected items.

Categories and Subject Descriptors
H.5.2. [Information interfaces and presentation]: User Interfaces – Graphical user interfaces (GUI)

General Terms
Documentation, Design, Experimentation.

Keywords

1. INTRODUCTION
The BrainDump prototype [2] is focusing on information-gathering tasks. These are complex web information tasks whereby the user has more than one question in mind. Users executing this kind of task are called knowledge workers and are defined as people “whose paid work involves significant time: gathering, finding, analyzing, creating, producing or archiving information” [9]. This creative business work faces a continuous change between analysis and synthesis. This interdependent process has been coined reflection-in-action [p.21, 8]. The amount of needed data, as well as their structure, is not known in advance. A given task is highly dynamic and structured stepwise. In contrast current tools imply that the goal of a task is clearly specified in advance and the steps to the solution are previously known [6]. Thus the interaction is predefined by the systems constraints. As consequence these tools hinder the user’s creative process in its early phase. The BrainDump prototype is addressing these problems. Knowledge workers are enabled to use a highly flexible visual map to represent and refine their current comprehension of a task. Considerable research has shown how users organize information using their spatial memory [4, 5, 6]. Spatial layouts are often used to manage transient or temporary information. BrainDump utilizes a metaphor based on fluids and cell structure, derived from experiments with natural physical substances [3]. This kind of visualization allows the user to visually memorize anticipations about relations. Furthermore textual annotations can be used. A first user study indicates that participants understood the purpose of BrainDump completely [2]. All of them would like to use the application more often in their daily work. They especially appreciated the easy way to visually change relations and associations between information.

We argue that resuming an interrupted task or continuing an earlier finished research is highly accelerated by utilizing BrainDump. The concept of the prototype aims towards offering the user a high degree of recognition for collected elements.

The development of the prototype is based on initial requirements:

• Task based interaction: "People should learn the task, not the technology" [7].
• Providing an overview: flexible visual shaping of the structure of the resulting ideas, associations and mental concepts should be supported.
• Modifying the overview: while being created it should be possible to directly modify the overview and thus supporting the reflection-in-action process.
• Flexible (re-)structuring of information
• History: the creative process should be saved for later reuse and reflection.

Specific design decisions for BrainDump were derived from the requirements above [2]:

• manual visual definition of relations with optional textual description
• definable strength of relations between objects
• free spatial sorting and arranging of objects
• hierarchical structuring of items with topics
• automatic saving of item related search queries
• manually collected representations of websites, according to interesting content for the user (e.g., pictures, text, videos)
• making annotations to the collection
local saving of websites related to collected items to prevent the loss of outdated websites
local saving of links (URLs) referring to the respective website

2. THE BRAINDUMP INTERFACE
The BrainDump interface appears at the right side of the screen like an extended taskbar (see Figure 1, A). It shows links referring to topics existing in the user's collection. The user can drag and drop parts from any document in the browser (pictures, pieces of text, and URLs) on these links. While hovering over the links these are magnified for a better view (see Figure 1, C). Now the user is able to freely place and relate the respective item.

To zoom in on a chosen topic while being in Management Mode the user performs a double click on it. By doing so an interactive ring on the left side of the screen appears (see Figure 3B). More rings appear if the user navigates deeper into the hierarchy (see Figure 3C). These rings also enable zooming out of a topic again and thus navigating up in the hierarchy. In addition, these rings are offering an overview about the level of hierarchy where the current view is located. Backtracking can be done step by step up the hierarchy or by directly jumping to a topic. All transitions are animated to support user orientation.

3. IMPLEMENTATION
The prototype is a windows application running on Windows XP and higher versions. It is based on the .NET-Framework and uses Object Linking and Embedding (OLE) for embedding and linking to documents and other objects. BrainDump can be used in combination with Microsoft Internet Explorer 7 or higher. The collected data is stored in an XML-file. The Zoomable User Interface was realized by using the Piccolo.NET framework [1]. Further details on the algorithm and concept are described in the publication An Interface for Visual Information-Gathering During Web Browsing Sessions: BrainDump – A Versatile Visual Workspace for Memorizing and Organizing Information [2].

4. CONCLUSION AND FUTURE WORK
The next step will be to evaluate the use of the system for a period of approximately two weeks and compare it with existing tools. An advanced follow-up version of the prototype for multi-touch interaction is currently under implementation on a tablet-pc. To gain first insights for design and improvement of the interactive visualization on multi-touch devices we conducted some further experiments described in the publication Immersive Data Grasping Using the eXplore Table [3].

5. ACKNOWLEDGMENTS
This project (contract no. 080951799) is funded by the European Social Fond and the Free State of Saxony as well as SAP Research.
6. REFERENCES


Figure 3: BrainDump interface with hierarchically grouped topics (colored) and items (white). A: View of a green topic with three items and the blue topic 1 in it. B: Zoomed-in view on the blue topic 1 with no items and topic 2. C: Zoomed-in view on the chartreuse topic 2 with two items. The rings on the left side of the screens B and C can be clicked to zoom-out and get up the hierarchy again. [2]