
FD4 Manual
User Documentation of the Four-Dimensional Distributed Dynamic Data structures.

Version fd4-2014-11-05

Developed at ZIH, TU Dresden, Germany
http://www.tu-dresden.de/zih/clouds
This work was funded by the German Research Foundation (DFG).

Matthias Lieber (matthias.lieber@tu-dresden.de)

http://www.tu-dresden.de/zih/clouds

Contents

1 Introduction 3

2 Basic Data Structure 4
2.1 Variable Table . 4
2.2 Block . 5
2.3 Domain and Iterator . 5
2.4 Cell-centered and Face-centered Variables . 5
2.5 Accessing Variable Arrays . 5
2.6 Accessing Variable Arrays with Ghosts . 6
2.7 Adaptive Block Mode . 7
2.8 Boundary Conditions . 7

3 Parallelization and Coupling 8
3.1 Ghost Communication . 8
3.2 Dynamic Load Balancing . 8
3.3 Coupling . 9

4 Building the FD4 Library 11
4.1 Prerequisites . 11
4.2 Configuration . 11
4.3 Compiling FD4 . 11

5 An FD4 Tutorial 13
5.1 Basics . 13
5.2 Variable Table Definition . 14
5.3 Domain Creation . 14
5.4 Block Iteration . 16
5.5 Ghost Cells . 16
5.6 Ghost Data Exchange . 17
5.7 Vis5D Output . 19
5.8 NetCDF Output . 20
5.9 Boundary Conditions . 20
5.10 Coupling Interface I . 21
5.11 Coupling Interface II . 22
5.12 Dynamic Load Balancing . 25
5.13 Adaptive Block Mode . 26
5.14 Utilities . 26

2

1 Introduction

The Four-Dimensional Distributed Dynamic Data structures (FD4) is a framework originally
developed for the parallelization of spectral bin cloud models and their coupling to atmospheric
models. Thus, the data structures are optimized for these kinds of model systems. To use FD4,
models must basically meet the following requirements:

• Based on a 3D regular cartesian grid without local refinement (i.e. AMR)
• PDE calculations with data dependencies to a limited number of adjacent cells (stencil

calculations)

Nevertheless, FD4 can be used for many other applications, especially if at least one of the
following points applies:

• Many variables per grid cell (>100)
• Varying workload per grid cell (varying in time as well as space) which demands dynamic

load balancing
• Multiphase model: Additional computations for a limited spatial subset of the grid (drops,

clouds, combustion processes, flame fronts, etc.)
• Model system: FD4-based Model coupled to other model(s)

The basic features of FD4 are:

• Open source software (GPL v3)
• Written in Fortran 95
• MPI parallelization (requires MPI-2)
• Block-based decomposition of a regular rectangular numerical grid
• Exchange of ghost cells (i.e. block boundaries, helo zones)
• Optimized for large number of variables per grid cell
• Dynamic load balancing with Hilbert space-filling curves and ParMETIS
• Dynamic adaption of grid allocation status according to spatial structures (multiphase

models)
• Coupling interface
• Vis5D and (parallel) NetCDF output
• Scalability to 10 000s of cores

3

2 Basic Data Structure

FD4 consists of several Fortran 95 modules each providing different data structures and ser-
vices. The basic data structure is constituted by the Variable Table, the Block, and the Do-
main:

3D
 B

lo
ck

 G
rid

 w
ith

 N
ei

gh
bo

r P
oi

nt
er

s Block with Data Fields Variable Table

Tree & List Blocks

2

1 0

3

6

5 4

89

11 10

Block 7 is not
allocated

4D−Array

4D−Array

4D−Array

1

2

3

4

’QC’, 66 bins,
2 steps, ...

’T,’ 1 bin,
2 steps, ...

’U’, 1 bin,
1 step, ...

’V’, 1 bin,
1 step, ...

4D−Array

4D−Array

4D−Array

2

1

0

3

4

Domain Definition of
− Grid size + properties
− Block decomposition

Contains
Variable propertiesBlock data structure

2.1 Variable Table

The Variable Table is a user-provided table of all variables that should be managed by FD4. It
contains entries for several variable properties:

• The variable’s name (character string)
• The discretization type (cell-centered or face-centered to any of the spatial dimensions)
• The number of time steps to allocate for this variable
• The size of a 4th (non-spatial) dimension called bin (originates from the size-resolving bin

discretization for detailed cloud models)
• A default value (“null”)
• An optional threshold value, to indicate separated phases in multiphase models and allow

adaptive block allocation

The index of the variable in the table is called Variable Index and is used as identifier. All
variables are floating point variables of the same kind (single or double precision). Integer or
other types are not provided.

4

Chapter 2. Basic Data Structure

2.2 Block

Based on the Variable Table, FD4 allocates the arrays holding the variables in each Block. The
Blocks provide a 3D decomposition of the grid. Blocks are allowed to be of different size. The
block decomposition is defined by one vector of block start indexes for each dimension, or, for
convenience, by specifying a number of blocks for each dimension.

The Blocks are contained in two data structures:

• Block Tree: A self-balancing binary tree (red-black tree) which provides logarithmic com-
plexity for access to arbitrary Blocks. For fast iteration, this tree is combined with a linked
list. The index of a Block in the Block Tree is derived from its position in the global grid by
fast bit shifting operations.

• Neighbor Pointers: To access Neighbor Blocks, which is required for any kind of stencil
computations, each Block contains pointers to its 6 Neighbor Blocks.

Note that not all Blocks may be present at a time: In a parallel run (which is the intended use
of FD4!), the Blocks are distributed to the processes. For more details about parallelization,
refer to Section 3. Additionally, when running in Adaptive Block Mode, only a specific subset
of the Blocks are present globally, refer to Section 2.7. Thus, a Neighbor Block may be: locally
present, on a remote process, or not present on any process.

2.3 Domain and Iterator

The Domain is the central object in FD4. It contains all data to describe the numerical grid
and the data structure of the allocated Blocks. The Iterator object allows iterating through the
local list of Blocks associated with the Domain and offers subroutines to access ghost cells,
see Section 2.6.

2.4 Cell-centered and Face-centered Variables

Cell-centered variables are located in the center of a 3D grid cell, whereas face-centered vari-
ables are centered on the grid cell’s surfaces that correspond a specified spatial dimension.
Thus, three types of face-centered variables are possible. Note, that the grid for face variables
is extended by one in the face dimension - for the global domain as well as for each Block:

face−centered
cell−centered

4 x 4 sized 2D block

x face−centeredcell−centered y face−centered

Consequently, two adjacent Blocks share copies of the same face variable at their boundary.
This has consequences regarding consistency, see Section 5.14. The actual data arrays are
allocated starting at index 1 for each dimension (block-local indexes).

One feature of FD4 is that the data arrays are allocated without ghost cells (helo zones), which
saves memory when small Blocks are used.

2.5 Accessing Variable Arrays

The variables are allocated in the Blocks as one 4D array per discretization type (cell-centered,
x-face, y-face, z-face). The variables, their time steps, and their bins are mapped on the first

5

Chapter 2. Basic Data Structure

dimension. The three other dimensions are used for the spatial indexes.

A specific variable item of one Block is accessed as block%sdata(f)%l(b,x,y,z) with

• the face variable indicator f (0 for cell-centered, 1–3 for face-centered in x, y, z respec-
tively)

• the variable, time steps, and bins encoded to b

• the block-local spatial indexes x, y, z

Since this not straightforward, an array of pointers for variables and their time steps pointing
to the corresponding sections in the actual data arrays is provided. The access is then via
block%fields(idx,st)%l(b,x,y,z) with

• the variable index idx as defined by the Variable Table
• the time step index st (starting at 1)
• the bin b (1 for non-4D variables)
• the block-local spatial indexes x, y, z

This figure illustrates an example for the data structures:

T1

T2

QC1

QC2

U1

U2

V1

V2

W1

W2

T1

T2

QC1

QC2

U1

U2

V1

V2

W1

W2

block%sdata(0:3)

4 4D arrays for storing cell−centered, x−face,
y−face, and z−face variables

block%fields(5,2)

For each (variable, step): Pointers to
sections of the 4D data arrays

Using the block%fields array, only grid cells of the local block can be accessed, but not grid
cells of Neighbor Blocks (ghost cells).

2.6 Accessing Variable Arrays with Ghosts

The Iterator object contains the subroutine fd4 iter get ghost to access variables of the
current Block including the boundaries of the 6 Neighbor Blocks (ghost cells). The variables are
copied to a buffer array, which can than be used for stencil computations. The number of ghost
cell rows is defined for each dimension when creating the domain. It is the same for all cell-
centered variables. Access to face-centered variables of Neighbor Blocks is not implemented.

This figure shows an example in 2D:

Copy current
block and
neighbor
boundaries to
a contiguous
array for
computation

Note, that only data of the 6 direct Neighbor Blocks (in 3D) are copied, not the data of the
diagonal Neighbor Blocks. The resulting values in the area of the ghost cells depend on the
state of each Neighbor Block:

• Neighbor is locally present: Data are copied directly from the Neighbor Block to the buffer
array.

6

Chapter 2. Basic Data Structure

• Neighbor is present on a remote process: Data are copied from the Ghost Block - a copy
of the remote Block’s boundary - to the buffer array. See Section 3.1.

• Neighbor is not present on any process: The corresponding section of the buffer array is
filled with the default value of the variable(s).

2.7 Adaptive Block Mode

FD4 allows the dynamic adaption of the block allocation to spatial structures. It is useful for
special multiphase applications when neither computations nor data are required for certain
regions of the spatial grid. In this case, memory can be saved by not allocating the unused
(empty) blocks. This mode, the so-called Adaptive Block Mode, is only enabled if any of the
variables in the Variable Table are threshold-variables, i.e. these variables have a threshold
value. A Block is considered empty if in all its grid cells the values of all threshold-variables are
less or equal than their corresponding threshold value. Based on this definition, FD4 decides
which blocks to deallocate from the global block structure. Additionally, FD4 ensures that ap-
propriate data are provided for the numerical stencil around non-empty cells. This mechanism
also triggers the allocation of new blocks:

Modified buffer array after
computations

FD4 block structure

Program gives
values back to FD4

FD4 allocates new blockvalues < threshold

values > threshold

The actual block adaption (allocation of new Blocks, deallocation of unused Blocks) is carried
out in the dynamic load balancing routine, see Section 3.2.

2.8 Boundary Conditions

Periodic boundary conditions are implemented straightforward in FD4 by periodic Neighbor
Pointers. For non-periodic boundary conditions, Boundary Ghost Blocks are added for Blocks
at the domain boundary. The Boundary Ghost Blocks have to be filled by the user, except
for zero gradient boundary conditions, which are implemented in FD4. This figure shows the
concept for periodic (left) and non-periodic (right) boundary conditions for an exemplary 2D
domain (in Adaptive Block Mode):

Periodic Boundary Non−Periodic Boundary

7

3 Parallelization and Coupling

Parallelization of the FD4 grid is achieved by distributing the Blocks to the processes. Conse-
quently, the total number of Blocks should be greater or equal than the number of processes.

3.1 Ghost Communication

Before performing stencil computations in parallel runs (which require the boundary of Neigh-
bor Blocks, see Section 2.6), the boundaries have to be transferred between the processes.
So-called Communication Ghost Blocks are allocated at process borders in the block de-
composition to store the boundary of remote Neighbor Blocks. The Ghost Communicator
object handles the update of the Communication Ghost Blocks. The Ghost Communicator is
created for a specified set of variables and respective time steps and can be executed when-
ever necessary. Optionally, it is possible to restrict the spatial dimensions of the ghost exchange
to one or two specified dimensions. The number of ghost cells that are exchanged is fixed for
the domain. The ghost communication is only possible for cell-centered variables and not for
face-centered variables.

This figure shows an exemplary block decomposition for two processes and the Communication
Ghost Blocks:

Rank 0 Rank 1

3.2 Dynamic Load Balancing

The dynamic load balancing in FD4 performs 3 major steps:

1. Determine if load balancing is necessary.
2. Calculate a new partitioning, i.e. mapping of Blocks to processes.
3. Migration and (De)allocation of Blocks.

Basically there are two situations for which load balancing is necessary: Firstly, when running in
Adaptive Block Mode, Blocks may be added or removed from the global domain, which requires
a new mapping of Blocks to processes. Secondly, if the workload of the Blocks changes non-
uniformly, the load balance of the processes declines and more time is lost at synchronization
points of the program. Of course, both reasons may also appear at the same time.

The workload of the Blocks is described by the Block Weight. The default value is the number
of grid cells of the Block. If the workload does not exclusively depend on the number of grid
cells, the Block Weight should be set to the actual computation time for each Block. If no
Blocks were added or removed from the global domain, the decision whether load balancing

8

Chapter 3. Parallelization and Coupling

is necessary or not depends on the load balance of the last time step (based on the Block
Weight) and a specified load balance tolerance. Thus, it is possible to control how sensitive
FD4 should react on emerging load imbalances. Instead of specifying a fixed tolerance, FD4
can also automatically decide whether load balancing is beneficial or not. FD4 weighs the time
lost due to imbalance against the time required for load balancing. This Auto Mode requires
that the Block Weights are set to the computation time in microseconds since the last call to
the load balancing subroutine.

Two different methods for the calculation of the new partitioning are implemented in FD4: A
graph-based approach using the ParMETIS library and a geometric approach using the Hilbert
space-filling curve (SFC). Both methods are incremental, which means that the difference of
successive partitionings is low to reduce migration costs. SFC partitioning is preferred since
it executes much faster compared to ParMETIS. This figure shows a 2D Hilbert SFC and an
exemplary partitioning derived from the curve:

3.3 Coupling

FD4 allows coupling models based on FD4 to external models, i.e. transferring variables be-
tween these models. The coupling interface has the following assumptions:

• Sequential coupling: Both models (FD4-based and external) work on the same set of
processes and all processes perform computations for these models alternately.

• Same grid structure: Both models have the same grid structure, or at least the external
model provides its coupling data matching the grid used in FD4.

• Block-based partitioning: The partitioning of the external model is based on rectangular
blocks, but may be different from the partitioning in FD4.

The Couple Context is the description of the Couple Arrays, the data fields of the external
model. Among other specifications, the position of each Couple Array in the global grid, the
process owning this array, and the matching FD4 variable must be provided. Based on this
description, FD4 computes the overlaps of each provided Couple Array with the Blocks and
transmits the variables directly between the processes. FD4 is able to communicate coupling
data in both directions: The Put operation sends variables from the external model to FD4
whereas Get sends variables from FD4 to the external model. This figure shows a Put operation
from one single partition of an external model to the matching FD4 Blocks:

Partition of external Model FD4 Partitioning

9

Chapter 3. Parallelization and Coupling

In this example, two messages are sent, if none of the two receiving FD4 partitions belongs to
the sender process of the external model. If the sender owns a receiving partition in FD4, the
corresponding data is copied locally without sending a message.

The Couple Context concept allows coupling multiple external models to multiple FD4-based
models. However, the direct coupling between two models based on FD4 is not implemented.

10

4 Building the FD4 Library

4.1 Prerequisites

Compiling and running FD4 requires:

• Unix or Linux system
• GNU make
• C and Fortran 95 compilers
• An MPI-2 implementation (for example Open MPI or MPICH2)

FD4 has been tested with the following compilers: GCC/GNU Fortran, GCC/G95, Intel, IBM,
PathScale, PGI, Solaris Studio, GCC/NAG.

Optional features of FD4 require additional external packages:

• The NetCDF library is required for NetCDF output. Parallel output is available with NetCDF4
only (if compiled with parallel HDF5). Serial output is possible with both NetCDF3 and
NetCDF4.
Website: http://www.unidata.ucar.edu/software/netcdf/

• Compiled sources of Vis5D+ are required to write output to Vis5D files.
Website: http://vis5d.sourceforge.net

• ParMETIS is required for graph-based dynamic load balancing. The built-in SFC load
balancing has proven to be much more scalable, so there is actually no need to build FD4
with ParMETIS support.
Website: http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview/

To visualize data from NetCDF files you can use tools such as Visit (https://wci.llnl.
gov/codes/visit/) or Ncview (http://meteora.ucsd.edu/˜pierce/ncview_home_
page.html).

4.2 Configuration

• Create a configuration file for your system in the directory config/.
• You can use conf.default as a starting point or the other config files specific to some

compilers.
• Name the config file conf.<NAME> or just overwrite conf.default.
• Optionally edit config/fd4flags.in to set some configuration flags for FD4, most

notably FD4 VERBOSE LEVEL (level 3 enables expensive runtime checks and has perfor-
mance impact!).

4.3 Compiling FD4

• Type make conf=<NAME>.

– You need GNU make; this may require calling gmake instead of make on certain
systems.

– If you name your config file conf.default, you can just type make.

11

http://www.open-mpi.org
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.unidata.ucar.edu/software/netcdf/
http://vis5d.sourceforge.net
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview/
https://wci.llnl.gov/codes/visit/
https://wci.llnl.gov/codes/visit/
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
http://meteora.ucsd.edu/~pierce/ncview_home_page.html

Chapter 4. Building the FD4 Library

• You can use parallel make to speed up the build process by calling, e.g.,
make -j 4 conf=<NAME>.

• This should build the library libfd4.a.
• To create multiple builds of FD4, use ./mkbuilddir.sh <DIR> to create a new build

directory (with its own configuration) and call make from there.

12

5 An FD4 Tutorial

This chapter shows the user interface subroutines of FD4 by means of small examples. The
example programs are contained in the FD4 package in the directory tutorial. They are
numbered in the same order as the following sections. The complete FD4 API documentation
of the user routines can be found in the FD4 package in doc/index.html.

5.1 Basics: 01 basics.F90

Include the module fd4 mod to your Fortran 95 source to make the FD4 interface available.
FD4 defines kind type parameters for integer and real variables in util/kinds.F90:

Name Data type Remarks
i4k 4 byte integer
i8k 8 byte integer
i k 4 byte integer default integer type in FD4
r4k 4 byte real
r8k 8 byte real
r k 8 byte real type for grid variables, can be changed to r4k

One of the basic utility functions is gettime, which returns the microseconds since 1970 as
an 8 byte integer. It can be used to clock parts of the program.

program fd4_demo_basics

use fd4_mod
implicit none

integer(i8k) :: time_now_us, t0, t1
real(r8k) :: time_now_s

! initialize the timing routines
! (normally, this routine is called when creating an FD4 domain)
call gettime_init()

! gettime is part of the FD4 utilities, calls C system function gettimeofday
call gettime(time_now_us)
time_now_s = real(time_now_us,r8k) / 1.e6_r8k

write(*,’(A,F16.4)’) ’seconds since 1970: ’, time_now_s

call gettime(t0)
call gettime(t1)
do while(t1<=t0)

call gettime(t1)
end do
write(*,’(A,I7,A)’) ’ gettime resolution: ’,t1-t0,’ us’

! FD4 also supports using getrusage (ru_utime) as timer
! (this is the time the process has run in user mode)
call gettime_rusage(t0)
call gettime_rusage(t1)
do while(t1<=t0)

call gettime_rusage(t1)
end do
write(*,’(A,I7,A)’) ’gettime_rusage resolution: ’,t1-t0,’ us’

! If compiled with PAPI, FD4 can make use of PAPIF_get_virt_cyc
! (this is the time the process has run in user mode)

13

Chapter 5. An FD4 Tutorial

call gettime_papi(t0)
if(t0/=TIMING_MOD_NO_PAPI .and. t0>0) then

call gettime_papi(t0)
call gettime_papi(t1)
do while(t1<=t0)
call gettime_papi(t1)

end do
write(*,’(A,I7,A)’) ’ gettime_papi resolution: ’,t1-t0,’ us’

end if

end program fd4_demo_basics

5.2 Variable Table Definition: 02 vartab.F90

Each variable that should be managed by FD4 is defined by an entry in the Variable Table, an
array of type fd4 vartab. See Section 2.1 for a description.

program fd4_demo_vartab

use fd4_mod
implicit none

! these paramters are the indexes of the variables in the variable table
integer, parameter :: varTmp = 1, varRho = 2, varQC = 3, varU = 4, varV = 5
integer, parameter :: number_of_variables = 5
! this is the variable table
type(fd4_vartab) :: vartab(number_of_variables)

! fill the variable table for varTemp
vartab(varTmp)%name = ’Temperature’ ! name of the variable, at most 64 characters
vartab(varTmp)%nbins = 1 ! number of bins = size of the 4th dimension
vartab(varTmp)%nsteps = 2 ! number of time steps to allocate
vartab(varTmp)%dynamic = .false. ! currently unused
vartab(varTmp)%vnull = 0.0_r8k ! initial/default value
vartab(varTmp)%vthres = FD4_NOTHRES ! threshold value or FD4_NOTHRES
vartab(varTmp)%facevar = FD4_CELLC ! discretization type

! since the type fd4_vartab has default values for all components but the name,
! you can left out some definitions
vartab(varRho)%name = ’Densitiy’
vartab(varRho)%nsteps = 2

! but the clearest method is to use the derived type constructors and
! arrange them as table with one variable per row
! name, nb, st, unused, ini, vthres, discret.
vartab(varQC) = fd4_vartab(’Droplets’, 12, 2, .false., 0.0, 0.0, FD4_CELLC)
vartab(varU) = fd4_vartab(’u Wind’, 1, 1, .false., 0.0, FD4_NOTHRES, FD4_FACEX)
vartab(varV) = fd4_vartab(’v Wind’, 1, 1, .false., 0.0, FD4_NOTHRES, FD4_FACEY)

write(*,’(5(A24,I4,I4,L3,E11.3,E11.3,I3,/))’) vartab

end program fd4_demo_vartab

5.3 Domain Creation: 03 domain.F90

The Domain is described by the derived type fd4 domain. Note, that the type fd4 domain
must be declared with the target attribute, though compilers will also accept code without
the attribute. A Domain is created by calling fd4 domain create, which needs the following
inputs:

• Number of Blocks in x, y, z
• Lower and upper bounds of the grid in x, y, z
• Variable Table
• Number of ghost cells in x, y, z

14

Chapter 5. An FD4 Tutorial

• Periodic boundary conditions in x, y, z
• MPI communicator

Creating a Domain does not allocate any Blocks. Use fd4 util allocate all blocks
to allocate all Blocks balanced over all processes. The subroutine fd4 domain delete re-
moves all Blocks and frees all memory associated with the Domain. FD4 collects some inter-
nal statistics that are printed to stdout when calling fd4 domain delete. You can also use
fd4 domain dump stats to print the statistics at any place in the program. The statistics will
contain more entries when you use ghost communication and coupling.

program fd4_demo_domain

use fd4_mod
implicit none
include ’mpif.h’

! FD4 variable table
integer, parameter :: varTmp = 1, varRho = 2, varQC = 3, varU = 4, varV = 5
integer, parameter :: number_of_variables = 5
type(fd4_vartab) :: vartab(number_of_variables)
! FD4 domain
integer :: dsize(3,2), bnum(3), nghosts(3)
logical :: periodic(3)
type(fd4_domain), target :: domain
! misc
integer :: rank, err

!! Create the variable table
! name, nb, st, unused, ini, vthres, discret.
vartab(varTmp) = fd4_vartab(’Temperature’, 1, 2, .false., 0.0, FD4_NOTHRES, FD4_CELLC)
vartab(varRho) = fd4_vartab(’Densitiy’, 1, 2, .false., 0.0, FD4_NOTHRES, FD4_CELLC)
vartab(varQC) = fd4_vartab(’Droplets’, 12, 2, .false., 0.0, FD4_NOTHRES, FD4_CELLC)
vartab(varU) = fd4_vartab(’u Wind’, 1, 1, .false., 0.0, FD4_NOTHRES, FD4_FACEX)
vartab(varV) = fd4_vartab(’v Wind’, 1, 1, .false., 0.0, FD4_NOTHRES, FD4_FACEY)

!! MPI Initialization
call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD,rank ,err)

!! Create the FD4 domain
dsize(1:3,1) = (/ 1, 1, 1/) ! grid start indices
dsize(1:3,2) = (/ 16, 16, 16/) ! grid end indices
bnum(1:3) = (/ 4, 4, 4/) ! number of blocks in each dimension
nghosts(1:3) = (/ 2, 2, 2/) ! number of ghost cells in each dimension
periodic(1:3) = .true. ! periodic boundaries
call fd4_domain_create(domain, bnum, dsize, vartab, nghosts, periodic, MPI_COMM_WORLD, err)
if(err/=0) then

write(*,*) ’fd4_domain_create failed’
call MPI_Abort(MPI_COMM_WORLD, 1, err)

end if

if(rank==0) write(*,’(A,I5)’) ’number of allocated blocks: ’, domain%blockcount

!! Allocate the blocks
call fd4_util_allocate_all_blocks(domain, err)

if(rank==0) write(*,’(A,I5)’) ’number of allocated blocks: ’, domain%blockcount

!! Delete the domain and finalize MPI
call fd4_domain_delete(domain)
call MPI_Finalize(err)

end program fd4_demo_domain

If you have compiled FD4 with FD4 VERBOSE LEVEL 2 or higher, FD4 should print something
like this:

[FD4:0000] created new fd4_domain:
[FD4:0000] dim start end blocks blksz ghosts per.bd
[FD4:0000] x 1 16 4 4.00 2 T
[FD4:0000] y 1 16 4 4.00 2 T
[FD4:0000] z 1 16 4 4.00 2 T
[FD4:0000] max. number of blocks: 64

15

Chapter 5. An FD4 Tutorial

[FD4:0000] Hilbert SFC level: 2
[FD4:0000] number of MPI processes: 2
[FD4:0000] block pool lists: 4
[FD4:0000] block pool max. size: 152
[FD4:0000] adaptive block mode: F
[FD4:0000] variable table:
[FD4:0000] id nbins nsteps dyn vnull threshld face name
[FD4:0000] 1 1 2 F 0.0E+00 - - Temperature
[FD4:0000] 2 1 2 F 0.0E+00 - - Densitiy
[FD4:0000] 3 12 2 F 0.0E+00 - - Droplets
[FD4:0000] 4 1 1 F 0.0E+00 - x u Wind
[FD4:0000] 5 1 1 F 0.0E+00 - y v Wind
number of allocated blocks: 0
number of allocated blocks: 64
[FD4:0000] FD4 Statistics min max avg sum
[FD4:0000] Balance check us 66 606 336 672
[FD4:0000] Balance part us 143 143 143 286
[FD4:0000] Balance mig us 2838 2946 2892 5784
[FD4:0000] Balance recv Blocks 0 0 0 0
[FD4:0000] Balance recv Bytes 0 0 0 0
[FD4:0000] Domain block alloc 32 32 32 64
[FD4:0000] Domain block free 0 0 0 0
[FD4:0000] Domain ghost alloc 32 32 32 64
[FD4:0000] Domain ghost free 0 0 0 0

5.4 Block Iteration: 04 iterator.F90

To access the Blocks a process owns, FD4 provides an Iterator, which iterates over all Blocks
of the Domain in unspecified order. To read or write the data fields of a Block, use the
block%fields(idx,st)%l(b,x,y,z) approach as described in Section 2.5. Note that
you cannot access the ghost cells in this way, see Section 5.5. A Block iteration loop looks as
follows:

!! Loop over all blocks of the domain and initialize the temperature
call fd4_iter_init(domain, iter)
do while(associated(iter%cur))

write(*,’(A,I4,A,3(I3))’) ’rank ’,rank,’ iterates to block at (x, y, z) ’,iter%cur%pos
! get offset from domain indexes to block-local indexes
call fd4_iter_offset(iter, offset)
! loop over block’s grid cells
do z=1,iter%cur%ext(3)
do y=1,iter%cur%ext(2)

do x=1,iter%cur%ext(1)
! get z coordinate of this grid cell in global coordinates
gz = offset(3) + z
! set temperature depending on global z coordinate
iter%cur%fields(varTmp,1)%l(1,x,y,z) = 295.0 + f * REAL(gz)

end do
end do

end do
! go to next block
call fd4_iter_next(iter)

end do

5.5 Ghost Cells: 05 ghosts.F90

To get variables from a Block with ghost cells from the six Neighbor Blocks, use the subroutine
fd4 iter get ghost. It copies the current Block’s data and the boundary of Neighbor Blocks
to a 4D buffer array. See Section 2.6 for more details about accessing ghost cells. The buffer
array must be large enough to hold the spatial bounds of the Block and the 4th dimension of
the variables. Note that the 4th dimension is in fact the 0th dimension: it comes first. To get the
bounds of the largest Block in the Domain, use the subroutine fd4 domain max bext. This

16

Chapter 5. An FD4 Tutorial

example shows how to allocate a buffer array for a variable with a 4th dimension and how to
read the ghost cells:

!! Allocate the buffer array for a single block with ghost cells
! get the max block extent (bext) including ghost cells
call fd4_domain_max_bext(domain, bext(1:3), .true.)
bext(0) = vartab(varQC)%nbins ! 4th dimension
! allocate the buffer array with interior grid cells starting at 1
allocate(buffer(bext(0),-1:bext(1)-2,-1:bext(2)-2,-1:bext(3)-2))
buffer = 0.0_r_k

!! Initialize time step indicators
now = 1
new = 2

!! Loop over all blocks of the domain and do some sort of computations
call fd4_iter_init(domain, iter)
do while(associated(iter%cur))

! get droplets with ghost cells from current block at time step ’now’
call fd4_iter_get_ghost(iter, varQC, now, bext, buffer)
! loop over block’s grid cells
do z=1,iter%cur%ext(3)
do y=1,iter%cur%ext(2)

do x=1,iter%cur%ext(1)
! do some stencil computations, update ’new’ values
iter%cur%fields(varQC,new)%l(:,x,y,z) = buffer(:,x,y,z) + &

(f(-2) * buffer(:,x-2,y,z) + f(-1) * buffer(:,x-1,y,z) + f(0) * buffer(:,x,y,z) &
+ f(1) * buffer(:,x+1,y,z) + f(2) * buffer(:,x+1,y,z)) * dt

! ...
end do

end do
end do
call fd4_iter_next(iter)

end do

5.6 Ghost Data Exchange: 06 heat.F90

Three functions are required to perform ghost communication (3.1): fd4 ghostcomm create,
fd4 ghostcomm exch, and fd4 ghostcomm delete.

Here is a complete demo application. It solves the heat conduction equation in 3D.
program fd4_demo_heat

use fd4_mod
implicit none
include ’mpif.h’

!! Setup parameters
real, parameter :: radius = 0.5 ! rel. radius of initial heat bubble
integer, parameter :: grid(3) = 32 ! number of grid cells for x, y, z
real(r_k), parameter :: ds(3) = 1.0 ! grid cell size for x, y, z
real(r_k), parameter :: dt = 0.1 ! time step size
integer, parameter :: nsteps = 1000 ! number of time steps to compute

! FD4 variable table
type(fd4_vartab) :: vartab(1)
integer, parameter :: THETA = 1
! FD4 domain
type(fd4_domain), target :: domain
integer :: dsize(3,2), bnum(3), nghosts(3)
logical :: periodic(3)
! FD4 iterator
type(fd4_iter) :: iter
! FD4 ghost communication
type(fd4_ghostcomm) :: ghostcomm(2)
! misc
integer :: rank, err, bext(0:3)
integer :: offset(3), x, y, z, now, new, step
real(r_k), allocatable :: buf(:,:,:,:)
real(r_k) :: dtheta
real :: global_pos(3), cr

17

Chapter 5. An FD4 Tutorial

!! MPI Initialization
call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD,rank ,err)

!! Create the FD4 variable table
!! (only one cell-centered variable ’theta’ with 2 time steps)
! name, nb, st, unused, ini, vthres, discret.
vartab(THETA) = fd4_vartab(’theta’, 1, 2, .false., 0.0, FD4_NOTHRES, FD4_CELLC)

!! Create the FD4 domain
dsize(1:3,1) = (/1, 1, 1/) ! grid start indices
dsize(1:3,2) = grid(1:3) ! grid end indices
bnum(1:3) = grid(1:3) / 4 ! number of blocks in each dimension
nghosts(1:3) = (/1, 1, 1/) ! number of ghost cells in each dimension
periodic(1:3) = .true. ! periodic boundaries
call fd4_domain_create(domain, bnum, dsize, vartab, nghosts, periodic, MPI_COMM_WORLD, err)
if(err/=0) then

write(*,*) rank, ’: fd4_domain_create failed’
call MPI_Abort(MPI_COMM_WORLD, 1, err)

end if

!! Allocate the blocks of the domain
call fd4_util_allocate_all_blocks(domain, err)

!! Allocate the buffer array for a single block with ghost cells
call fd4_domain_max_bext(domain, bext(1:3), .true.)
bext(0) = 1 ! 4th dimension not used here
allocate(buf(bext(0),0:bext(1)-1,0:bext(2)-1,0:bext(3)-1))
buf = 0.0_r_k

!! Initialize time step indicators
now = 1
new = 2

!! Initialize theta with a spherical heat bubble
call fd4_iter_init(domain, iter)
do while(associated(iter%cur))

! offset from domain indexes to block-local indexes
call fd4_iter_offset(iter, offset)
! loop over block’s grid cells
do z=1,iter%cur%ext(3)
do y=1,iter%cur%ext(2)

do x=1,iter%cur%ext(1)
! get global coordinates of this grid cell and scale to [0,1]
global_pos(1:3) = REAL(offset(1:3) + (/x,y,z/) - 1) / REAL(dsize(1:3,2) - 1)
! distance from domain center to current grid cell
cr = sqrt((global_pos(1)-0.5)**2+(global_pos(2)-0.5)**2+(global_pos(3)-0.5)**2)
if(cr < radius) then

iter%cur%fields(THETA,now)%l(1,x,y,z) = 2.0_r_k * cos(3.14159*cr/(2*radius))
end if

end do
end do

end do
call fd4_iter_next(iter)

end do

!! Create ghost communicator for variable THETA (one for each time level)
call fd4_ghostcomm_create(ghostcomm(1), domain, 1, (/THETA/), (/1/), err)
call fd4_ghostcomm_create(ghostcomm(2), domain, 1, (/THETA/), (/2/), err)

!! Time stepping loop
do step=1,nsteps

! exchange ghost cells for time level ’now’
call fd4_ghostcomm_exch(ghostcomm(now), err)

! iterate over all local blocks
call fd4_iter_init(domain, iter)
do while(associated(iter%cur))
! get theta with ghost cells from current block
call fd4_iter_get_ghost(iter, THETA, now, bext, buf)
! loop over block’s grid cells
do z=1,iter%cur%ext(3)

do y=1,iter%cur%ext(2)
do x=1,iter%cur%ext(1)

18

Chapter 5. An FD4 Tutorial

! (d2T d2T d2T)
! theta_new = theta_now + (--- + --- + ---) * dt
! (dx2 dy2 dz2)
! calculate dtheta
dtheta = (buf(1,x-1,y,z) + buf(1,x+1,y,z) - 2*buf(1,x,y,z)) / (ds(1) * ds(1)) &

+ (buf(1,x,y-1,z) + buf(1,x,y+1,z) - 2*buf(1,x,y,z)) / (ds(2) * ds(2)) &
+ (buf(1,x,y,z-1) + buf(1,x,y,z+1) - 2*buf(1,x,y,z)) / (ds(3) * ds(3))

! set updated theta value
iter%cur%fields(THETA,new)%l(1,x,y,z) = buf(1,x,y,z) + dtheta * dt

end do
end do

end do
call fd4_iter_next(iter)

end do

if(rank==0 .and. mod(step,100)==0) write(*,’(A,I5)’) ’step ’,step

! swap time step indicators
now = 3 - now
new = 3 - new

end do

!! Delete the ghost communicator and the domain, finalize MPI
call fd4_ghostcomm_delete(ghostcomm(1))
call fd4_ghostcomm_delete(ghostcomm(2))
call fd4_domain_delete(domain)
call MPI_Finalize(err)

end program fd4_demo_heat

5.7 Vis5D Output: 07 heat v5d.F90

Simple output of grid data to Vis5D files is supported in FD4. The work sequence is quiet
simple: open - write - write - ... - close where each write call writes data from a different time
step of the simulation. In comparison to FD4’s NetCDF output, there are two limitations which
originate from Vis5D’s simple interface: Only one of such work sequences can be active at any
time during the whole program run and when opening the Vis5D file you must already know
how many write calls you will issue.

To add Vis5D output to the demo application in 5.6, three code snippets need to be added to
the code. The first snippet defines the output file’s name, the number of write calls, and the
variables with their corresponding time steps. It must be called once before the time stepping
loop. fd4 vis5d open has additional optional parameters to define grid cell size and map
projection, see the API documentation. After this, the first write call writes initial data to the file.

!! Initialize Vis5D output and write initial data
call fd4_vis5d_open(domain, ’out.v5d’, nsteps/100+1, 1, (/THETA/), (/now/), err)
call fd4_vis5d_write(err)

The following snippet writes data during time stepping to the Vis5D file (every 100th step only).
The optional parameter st opt is used to tell FD4 to write the data of the current step.

!! Write Vis5D output
if(mod(step,100)==0) then
if(rank==0) write(*,’(A,I5)’) ’step ’,step
call fd4_vis5d_write(err, st_opt=(/new/))

end if

And finally the Vis5D file needs to be closed before terminating the program:

!! Close Vis5D
call fd4_vis5d_close(err)

19

Chapter 5. An FD4 Tutorial

5.8 NetCDF Output: 08 heat netcdf.F90

NetCDF output is working quiet similar to Vis5D output. But here, multiple NetCDF communi-
cators can be defined to create independent output contexts. Thus, a new variable needs to
be defined:

! FD4 netcdf communicator
type(fd4_netcdf4_comm) :: nfcomm

When opening a NetCDF file, the NetCDF communicator is initialized. This handle is parameter
of all NetCDF output routines. Thus, opening the file and writing the initial data before the time
stepping loop looks like this:

!! Initialize NetCDF output and write initial data
call fd4_netcdf4_open(nfcomm, domain, ’out.nc’, 1, (/THETA/), (/now/), err)
call fd4_netcdf4_write(nfcomm,err)

Writing to NetCDF during the time stepping looks quiet similar to the Vis5D version. There is
also an optional parameter st opt to set change the time step to write for all variables.

!! Write NetCDF output
if(mod(step,100)==0) then
if(rank==0) write(*,’(A,I5)’) ’step ’,step
call fd4_netcdf4_write(nfcomm, err, st_opt=(/new/))

end if

And this is how an NetCDF file is closed. The NetCDF communicator can be re-used (by calling
fd4 netcdf4 open) after this call:

!! Close NetCDF
call fd4_netcdf4_close(nfcomm, err)

Note, that there are two ways of integrating NetCDF in FD4:

• Serial NetCDF: This is the standard way. You can use NetCDF version 3 or 4 in this case.
The output is performed completely serial, that means rank 0 collects and writes all data.

• Parallel NetCDF4 based on HDF5: This requires an installation of parallel HDF5 and
NetCDF4 based on HDF5. In this case, the data is written in parallel. The resulting file is
actually a HDF5 file, but it can be read by all tools that are based on the NetCDF4/HDF5
installation. However, if you experience problems in post-processing or visualizing the
output file, you can convert it to real NetCDF format using the nccopy utility of the
NetCDF4/HDF5 installation:
nccopy -k2 <input NetCDF4 file> <output NetCDF file>

FD4 can only use exclusively one of these two ways. The method used is determined when
building the FD4 library, which is described in Chapter 4.

5.9 Boundary Conditions: 09 heat boundary.F90

FD4 supports three types of boundary conditions, see 2.8 for more information

• Periodic boundary conditions: Can be enabled for each dimension with the argument
periodic of fd4 domain create.

• Zero-gradient: Must be set in each iteration with the routines fd4 boundary zerograd
and fd4 boundary zerograd block. They set cell-centered variables in the Boundary
Ghost Blocks to the same value as in the cells at domain boundary and face variables at
domain boundary (within domain) to vnull.

• Specific boundary conditions: User-defined values in the Boundary Ghost Blocks can be
set with the routines fd4 boundary spec and fd4 boundary spec block.

20

Chapter 5. An FD4 Tutorial

The following snippets extend the heat equation example by non-periodic boundary conditions.
Firstly, specific, fixed boundary conditions for the lower z boundary of the domain are set before
the beginning of the iteration. The values are set to 0 for all Boundary Ghost Blocks except for
a rectangular region, in which the values are set to 2:

! set (fixed) boundary conditions for lower z
call fd4_boundary_spec (domain, (/THETA,THETA/), (/now,new/), 3, 1, (/0.0_r_k/))
! iterate over all local blocks to add some position-dependent boundary conditions
call fd4_iter_init(domain, iter)
do while(associated(iter%cur))

! block is at lower boundary in z dimension
if(iter%cur%pos(3)==1) then
! get offset from block-local to global coordinates
call fd4_iter_offset(iter, offset)
! loop over grid cells in x and y
do y=1,iter%cur%ext(2)

do x=1,iter%cur%ext(1)
! set boundary conditions for specific grid cells
if(x+offset(1)>grid(1)/4 .and. x+offset(1)<3*grid(1)/4 .and. &

y+offset(2)>grid(1)/4 .and. y+offset(2)<3*grid(1)/4) then
iter%cur%neigh(3,1)%l%fields(THETA,now)%l(:,x,y,1) = 2.0_r_k
iter%cur%neigh(3,1)%l%fields(THETA,new)%l(:,x,y,1) = 2.0_r_k

end if
end do

end do
end if
call fd4_iter_next(iter)

end do

The other boundaries (x, y, upper z) are initialized with zero-gradient boundary conditions at
the beginning of each iteration for each single Block:

! set zero-gradient boundary conditions for x, y, and upper z for this block
call fd4_boundary_zerograd_block(domain, iter%cur, (/THETA/), (/now/), FD4_XY)
call fd4_boundary_zerograd_block(domain, iter%cur, (/THETA/), (/now/), FD4_Z, opt_dir=2)

The example demonstrates how the heat expands from the lower z boundary into the domain.

5.10 Coupling Interface I: 10 heat couple.F90

This example extends 08 heat netcdf.F90 by using the coupling interface of FD4 (3.3) to
initialize the grid variable theta. Seven FD4 routines are required to achieve this:

• fd4 couple create: Creates an empty Couple Context.
• fd4 couple add partition: Adds metadata of a rectangular 3D partition: Position in

the grid and owner rank. Must be called for all partitions (local and non-local). For each
rank an arbitrary number of partitions can be defined, but the tutorial programs only use
one partition per rank.

• fd4 couple add var: Adds metadata of a variable for coupling: Variable index and
step index. The coupling takes place for each partition/variable combination. One such
combination is called Couple Array. This subroutine returns an Couple Array Index which
must be used in fd4 couple set local 3D array to identify the local Couple Array.
After the first call to this routine, you cannot add further partitions.

• fd4 couple set local 3D array: Assign the pointer and offset to relevant data of the
local Couple Array. The argument must be a pointer. Use an additional pointer to point
to an allocatable where required (contiguous subsections are allowed). After the first call
to this routine, you cannot add further variables. Note, that for face variables the Couple
Array must be extended in face direction by one cell plane.

• fd4 couple commit: Commit the Couple Context, FD4 now checks the Couple Arrays
and prepares MPI data types. From now on, you cannot add further arrays to the Couple
Context.

21

Chapter 5. An FD4 Tutorial

• fd4 couple put: This routine actually performs the coupling data transfer. It puts data
from the distributed coupling arrays to FD4’s data structures.

• fd4 couple delete: This routine frees all memory associated with the coupling con-
text, which can be very much when running with 1000s of processes.

In the example program, the array with initial data of theta is distributed over all ranks in a
simple 1D partitioning. Each rank adds a local coupling array to the Couple Context.

!! Create couple context to put initial data to the FD4 domain
call fd4_couple_create(couple_init, domain, err, opt_cpldir=FD4_CPL_PUT)
! add one couple array per rank for theta
do irank = 0, nproc-1

! Set cabnd(:,:) to the bounds of the coupling arrays of current rank.
! (here we simply calculate bounds for an 1D-partitioning)
cabnd(1:3,1) = (/ 1+(irank*dsize(1,2))/nproc, 1, 1 /)
cabnd(1:3,2) = (/ ((irank+1)*dsize(1,2))/nproc, dsize(2,2), dsize(3,2) /)
! Add a couple array of current rank with given bounds.
call fd4_couple_add_partition(couple_init, irank, cabnd, err)

end do
! Add the variable THETA to the couple context.
! FD4 returns the identifier caidxTheta for the local couple array.
call fd4_couple_add_var(couple_init, THETA, now, err, caidxTheta)
! allocate the local couple array and add it to the couple context
allocate(iniTheta(cabnd(1,1):cabnd(1,2),cabnd(2,1):cabnd(2,2),cabnd(3,1):cabnd(3,2)))
iniTheta = 0.0_r_k
arraypointer => iniTheta(:,:,:)
call fd4_couple_set_local_3D_array(couple_init, caidxTheta, arraypointer, (/1,1,1/), err)
! commit the couple context, FD4 now checks the couple arrays and prepares MPI data types
call fd4_couple_commit(couple_init, err)
! fill the couple array with initial data
do z=cabnd(3,1),cabnd(3,2)

do y=cabnd(2,1),cabnd(2,2)
do x=cabnd(1,1),cabnd(1,2)

! get global coordinates of this grid cell and scale to [0,1]
global_pos(1:3) = REAL((/x,y,z/) - 1) / REAL(dsize(1:3,2) - 1)
! distance from domain center to current grid cell
cr = sqrt((global_pos(1)-0.5)**2+(global_pos(2)-0.5)**2+(global_pos(3)-0.5)**2)
if(cr < radius) then

iniTheta(x,y,z) = 2.0_r_k * cos(3.14159*cr/(2*radius))
end if

end do
end do

end do
! finally put data to FD4’s data structures
call fd4_couple_put(couple_init, err)
! delete couple context and deallocate couple array
call fd4_couple_delete(couple_init, err)
deallocate(iniTheta)

The reverse action of fd4 couple put is performed by fd4 couple get: It transfers data
from the FD4 data structures to distributed coupling arrays. You can also add 4D Couple Arrays
(for variables with bins) to the Couple Context using fd4 couple set local 4D array. It is
allowed to change the coupling arrays of a committed Couple Context (as long as the size of the
array fits) using fd4 couple chg local 3D array and fd4 couple chg local 4D array.

5.11 Coupling Interface II: 11 advection couple.F90

This is a completely new example program to demonstrate how to use the coupling interface
not only for initialization, but for its main purpose: to exchange data between the FD4 data
structures and differently distributed data regularly during iteration.

The program computes the concentration of some tracer c under a changing wind field by
a very simple advection scheme. The horizontal winds u and v and the vertical wind w are
‘computed’ externally (which stands for some external model coupled to the tracer model) and
transferred to the FD4 data structures at the beginning of every time step using the coupling
interface.

22

Chapter 5. An FD4 Tutorial

Here is the main program with the time stepping loop. Note the call to advection set vortex
at program initialization and during time stepping, which sets the wind fields in the Couple
Arrays. The actual coupling is carried out by the following call to fd4 couple put.

program fd4_demo_advection
use fd4_mod
use advection
implicit none
include ’mpif.h’
!! Setup parameters
integer, parameter :: grid(3) = 32 ! number of grid cells for x, y, z
real(r_k), parameter :: dt = 0.1 ! time step size
integer, parameter :: nsteps = 2000 ! number of time steps to compute
integer, parameter :: omod = 100 ! number of steps between output
! FD4 variable table
type(fd4_vartab) :: vartab(4)
! FD4 domain
type(fd4_domain), target :: domain
integer :: dsize(3,2), bnum(3), nghosts(3)
logical :: periodic(3)
! FD4 iterator
type(fd4_iter) :: iter
! FD4 ghost communication
type(fd4_ghostcomm) :: ghostcomm(2)
! FD4 netcdf communicator
type(fd4_netcdf4_comm) :: nfcomm
! FD4 coupling context
type(fd4_couple) :: couple
! misc
integer :: rank, err, now, new, step
!! MPI Initialization
call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD,rank ,err)
!! Create the FD4 variable table
! name, nb, st, unused, ini, vthres, discret.
vartab(varU) = fd4_vartab(’u’, 1, 1, .false., .0 , FD4_NOTHRES, FD4_FACEX)
vartab(varV) = fd4_vartab(’v’, 1, 1, .false., .0 , FD4_NOTHRES, FD4_FACEY)
vartab(varW) = fd4_vartab(’w’, 1, 1, .false., .0 , FD4_NOTHRES, FD4_FACEZ)
vartab(varC) = fd4_vartab(’c’, 1, 2, .false., .0 , FD4_NOTHRES, FD4_CELLC)
!! Create the FD4 domain
dsize(1:3,1) = (/1, 1, 1/) ! grid start indices
dsize(1:3,2) = grid(1:3) ! grid end indices
bnum(1:3) = grid(1:3) / 8 ! number of blocks in each dimension
nghosts(1:3) = (/1, 1, 1/) ! number of ghost cells in each dimension
periodic(1:3) = .true. ! periodic boundaries
call fd4_domain_create(domain, bnum, dsize, vartab, nghosts, periodic, MPI_COMM_WORLD, err)
if(err/=0) then

write(*,*) rank, ’: fd4_domain_create failed’
call MPI_Abort(MPI_COMM_WORLD, 1, err)

end if
!! Allocate the blocks of the domain
call fd4_util_allocate_all_blocks(domain, err)
!! Initialize time step indicators
now = 1
new = 2
!! Allocate buffer array and initialize the concentration field varC
call advection_init(domain, now)
!! Initialize coupling with wind fields
call advection_init_coupling(domain, couple)
!! Set wind fields and perform first coupling
call advection_set_vortex(0.0)
call fd4_couple_put(couple, err)
!! Create ghost communicator for variable varC (one for each time level of varC)
call fd4_ghostcomm_create(ghostcomm(1), domain, 1, (/varC/), (/1/), err)
call fd4_ghostcomm_create(ghostcomm(2), domain, 1, (/varC/), (/2/), err)
!! Initialize output and write initial data
call fd4_netcdf4_open(nfcomm, domain, ’out.nc’, 4, (/varU,varV,varW,varC/), &

(/1,1,1,now/), err)
call fd4_netcdf4_write(nfcomm,err)
call fd4_vis5d_open(domain, ’out.v5d’, nsteps/omod+1, 4, (/varU,varV,varW,varC/), &

(/1,1,1,now/), err)
call fd4_vis5d_write(err)
!! Time stepping loop
do step=1,nsteps

!! Set wind fields in the couple arrays and perform coupling
call advection_set_vortex((step-1.0)/nsteps)

23

Chapter 5. An FD4 Tutorial

call fd4_couple_put(couple, err)
! exchange ghost cells for time level ’now’
call fd4_ghostcomm_exch(ghostcomm(now), err)
! iterate over all local blocks
call fd4_iter_init(domain, iter)
do while(associated(iter%cur))
! compute simplistic advection scheme on current block
call advection_compute(iter, now, new, dt)
call fd4_iter_next(iter)

end do
! write output
if(mod(step,omod)==0) then
if(rank==0) write(*,’(A,I5)’) ’step ’,step
call fd4_netcdf4_write(nfcomm, err, st_opt=(/1,1,1,new/))
call fd4_vis5d_write(err, st_opt=(/1,1,1,new/))

end if
! swap time step indicators
now = 3 - now
new = 3 - new

end do
!! Close output files
call fd4_netcdf4_close(nfcomm, err)
call fd4_vis5d_close(err)
!! Delete couple context, ghost communicator, and domain, finalize MPI
call fd4_couple_delete(couple, err)
call fd4_ghostcomm_delete(ghostcomm(1))
call fd4_ghostcomm_delete(ghostcomm(2))
call fd4_domain_delete(domain)
call MPI_Finalize(err)

end program fd4_demo_advection

The subroutine advection init coupling allocates the Couple Arrays cplU, cplV, and
cplW and initializes the Couple Context. The Couple Arrays are distributed in the same way
as in the previous example, but since the winds are defined as face variables, the size of the
arrays in extended by one row in the dimension of the face.

subroutine advection_init_coupling(domain, couple)
type(fd4_domain), intent(inout), target :: domain
type(fd4_couple), intent(inout) :: couple
integer :: irank, err, caidxU, caidxV, caidxW
real(r_k), pointer :: arraypointer(:,:,:)
!! Create couple context to put initial data to the FD4 domain
call fd4_couple_create(couple, domain, err, opt_cpldir=FD4_CPL_PUT)
!! Add couple arrays of all processes to the couple context
do irank = 0, nproc-1
! Set cabnd(:,:) to the bounds of the coupling arrays of current rank
cabnd(1:3,1) = (/ 1+(irank*dsize(1,2))/nproc, 1, 1 /)
cabnd(1:3,2) = (/ ((irank+1)*dsize(1,2))/nproc, dsize(2,2), dsize(3,2) /)
! Add a couple array of current rank with given bounds.
call fd4_couple_add_partition(couple, irank, cabnd, err)

end do
! Add the variables varU, varV, and varW to the couple context.
! FD4 returns the identifiers for the local couple array.
call fd4_couple_add_var(couple, varU, 1, err, caidxU)
call fd4_couple_add_var(couple, varV, 1, err, caidxV)
call fd4_couple_add_var(couple, varW, 1, err, caidxW)
! set this process’ couple array bounds
cabnd(1:3,1) = (/ 1+(rank*dsize(1,2))/nproc, 1, 1 /)
cabnd(1:3,2) = (/ ((rank+1)*dsize(1,2))/nproc, dsize(2,2), dsize(3,2) /)
! x-face variable cplU has one additional cell row in x dimension
allocate(cplU(cabnd(1,1):cabnd(1,2)+1,cabnd(2,1):cabnd(2,2),cabnd(3,1):cabnd(3,2)))
cplU = 0.0_r_k
arraypointer => cplU(:,:,:)
call fd4_couple_set_local_3D_array(couple, caidxU, arraypointer, (/1,1,1/), err)
! y-face variable cplV has one additional cell row in y dimension
allocate(cplV(cabnd(1,1):cabnd(1,2),cabnd(2,1):cabnd(2,2)+1,cabnd(3,1):cabnd(3,2)))
cplV = 0.0_r_k
arraypointer => cplV(:,:,:)
call fd4_couple_set_local_3D_array(couple, caidxV, arraypointer, (/1,1,1/), err)
! z-face variable cplW has one additional cell row in z dimension
allocate(cplW(cabnd(1,1):cabnd(1,2),cabnd(2,1):cabnd(2,2),cabnd(3,1):cabnd(3,2)+1))
cplW = 0.0_r_k
arraypointer => cplW(:,:,:)
call fd4_couple_set_local_3D_array(couple, caidxW, arraypointer, (/1,1,1/), err)
! commit the couple context, FD4 now checks the couple arrays and prepares MPI data types

24

Chapter 5. An FD4 Tutorial

call fd4_couple_commit(couple, err)
end subroutine advection_init_coupling

5.12 Dynamic Load Balancing: 12 advection balance.F90

The advection scheme in 11 advection couple.F90 causes some small load imbalances,
since it requires less computation time in grid cells where the concentration is zero. These code
snippets add dynamic load balancing (3.2) to the previous example. Firstly, in the initialization
part of the program after creating the Domain, we can set some load balancing parameters:

!! Set some load balancing parameters
call fd4_balance_params (domain, method=FD4_BALANCE_HSFC2_PARALLEL, opt_lbtol=0.95)

Setting parameters is not required, but it may be useful to override the defaults. These param-
eters choose space-filling curve load balancing with an threshold of 0.95. This means that load
balancing is only invoked, if the balance falls below this value, where load balance is defined
as the average partition load divided by the maximum partition load. Thus, a value of 1.0 for
opt lbtol is the strictest and 0.0 disables load balancing. There are more parameters, refer
to the API documentation.

The following modifications are necessary at the time stepping loop for dynamic load balancing:

do step=1,nsteps
!! Set wind fields in the couple arrays and perform coupling
call advection_set_vortex((step-1.0)/nsteps)
call fd4_couple_put(couple, err)
! exchange ghost cells for time level ’now’
call fd4_ghostcomm_exch(ghostcomm(now), err)
! iterate over all local blocks
call fd4_iter_init(domain, iter)
do while(associated(iter%cur))
! time the start of computations on current block
call fd4_iter_start_clock(iter)
! compute simplistic advection scheme on current block
call advection_compute(iter, now, new, dt)
! time the end of computations on current block, set block weight
call fd4_iter_stop_clock(iter, 0.0)
call fd4_iter_next(iter)

end do
! rebalance the workload based on the measured block weights
call fd4_balance_readjust(domain, err, opt_stats=stats)
! write output
if(mod(step,omod)==0) then
if(rank==0) write(*,’(A,I5,A,F6.3)’) ’step ’,step,’ bal:’,stats%last_measured_balance
call fd4_netcdf4_write(nfcomm, err, st_opt=(/1,1,1,new/))
call fd4_vis5d_write(err, st_opt=(/1,1,1,new/))

end if
! swap time step indicators
now = 3 - now
new = 3 - new

end do

The load is measured with the routines fd4 iter start clock and fd4 iter stop clock
that time the computation of one Block. This measurement is used to determine the load
balance and acts as weight for rebalancing the load. Every computation on a Block should be
enclosed by these calls. The actual load balancing is invoked by fd4 balance readjust.
The optional parameter opt stats returns a type that contains some statistical information
about the load balancing such as the number of migrated Blocks, measured load balance and
so on – see API documentation.

25

Chapter 5. An FD4 Tutorial

5.13 Adaptive Block Mode: 13 advection adaptive.F90

Now we can apply the Adaptive Block Mode (2.7) to the previous example. Only small modifica-
tions are necessary. Firstly, a threshold value (vthres) must be defined for the concentration
field variable c in the Variable Table. FD4 will remove all Blocks where c is smaller than this
threshold.

!! Create the FD4 variable table
! name, nb, st, unused, ini, vthres, discret.
vartab(varU) = fd4_vartab(’u’, 1, 1, .false., .0 , FD4_NOTHRES, FD4_FACEX)
vartab(varV) = fd4_vartab(’v’, 1, 1, .false., .0 , FD4_NOTHRES, FD4_FACEY)
vartab(varW) = fd4_vartab(’w’, 1, 1, .false., .0 , FD4_NOTHRES, FD4_FACEZ)
vartab(varC) = fd4_vartab(’c’, 1, 2, .false., .0 , 1.d-10, FD4_CELLC)

Then, the call to fd4 util allocate all blocks must be removed in the initialization part
of the main program. Instead of allocating all Blocks, only those Blocks where the initial values
of c are greater than the threshold should be allocated. This is achieved by a 2-step procedure
in subroutine advection init prior to calling fd4 couple put to transfer the initial data to
FD4 (which has not allocated any Blocks yet):

1. fd4 couple mark blocks marks all Blocks as ‘required’ which contain c greater than
the threshold in the Couple Arrays of the Couple Context.

2. fd4 balance readjust allocates these marked Blocks in a load-balanced way.

! mark all FD4 blocks which contain varC > threshold
call fd4_couple_mark_blocks(couple_init, err)
! this actually allocates these blocks in a load-balanced way
call fd4_balance_readjust(domain, err)
! finally put data to FD4’s data structures
call fd4_couple_put(couple_init, err)

Finally, an additional call to FD4 is required in the Block loop during time stepping. After the
computations of a Block are done, fd4 iter empty must be called so that FD4 checks if the
Block is now empty or not.

! iterate over all local blocks
call fd4_iter_init(domain, iter)
do while(associated(iter%cur))
! time the start of computations on current block
call fd4_iter_start_clock(iter)
! compute simplistic advection scheme on current block
call advection_compute(iter, now, new, dt)
! check if the block is empty
call fd4_iter_empty(iter, varC, new)
! time the end of computations on current block, set block weight
call fd4_iter_stop_clock(iter, 0.0)
call fd4_iter_next(iter)

end do

This information is used in fd4 balance readjust to find not any longer required Blocks and
to identify Blocks that need to be allocated because c moves near the boundary of an existing
Neighbor Block.

5.14 Utilities: 14 advection utils.F90

These utility subroutines are not optimized for performance and should be used during devel-
opment and for debug purpuses only, but not for large-scale runs.

Face variable utilities: As described in 2.4 the Blocks share the same copy of face variables
at the boundaries in the face variable’s direction. To check the consistency of face variables
between Neighbor Blocks for a given variable, FD4 offers fd4 util check facevar. Errors
are reported on stdout. The implementation is very simple: All Blocks are migrated to rank 0

26

Chapter 5. An FD4 Tutorial

which performs the checks, than the Blocks are distributed again over all ranks. Therefore, you
should use fd4 util check facevar only for small debug runs!

The routine fd4 util propagate facevar enforces the consistency of the given face vari-
able in all Blocks. It copies face values at the boundary to the corresponding Neighbor Block.

! generate an inconsistency in varV
call fd4_iter_init(domain, iter)
if(rank==0 .and. associated(iter%cur)) iter%cur%fields(varV,1)%l = 0.1701_r_k
! check the 3 wind vectors for consistency between neighbor blocks
if(rank==0) write(*,’(A)’) ’Checking varU for consistency’
call fd4_util_check_facevar(domain, varU, 1, err)
if(rank==0) write(*,’(A)’) ’Checking varV for consistency’
call fd4_util_check_facevar(domain, varV, 1, err)
if(rank==0) write(*,’(A)’) ’Checking varW for consistency’
call fd4_util_check_facevar(domain, varW, 1, err)
! make face variables consistent
call fd4_util_propagate_facevar(domain, (/varV/), (/1/), .false., err)
! check varV again
if(rank==0) write(*,’(A)’) ’Checking varV for consistency’
call fd4_util_check_facevar(domain, varV, 1, err) ! should not report a problem

Data utilities: To quickly access the data at a certain point in the grid, you can use the sub-
routine fd4 util get value. The subroutine fd4 util get array gathers the grid for a
single variable on a given rank. The array passed to this routine must match the size of the
domain.

! print value at given position
value = fd4_util_get_value(domain, varC, now, (/1,16,16,8/), 0)
if(rank==0) write(*,’(A,F8.3)’) ’varC at (16,16,8) = ’,value
! let rank 0 collect the complete varC data
abnd(1:3,1:2) = domain%dbnd
abnd(0,1:2) = 1
allocate(array(1,abnd(1,1):abnd(1,2),abnd(2,1):abnd(2,2),abnd(3,1):abnd(3,2)))
call fd4_util_get_array(domain, varC, now, abnd, array, err, 0)
! print sum over each k-column in ascii-art
if(rank==0) then

do j=abnd(2,2),abnd(2,1),-1
do i=abnd(1,1),abnd(1,2)

if(SUM(array(1,i,j,:))>1.0_r_k) then
write(*,’(A2)’,advance=’no’) ’#’

elseif(SUM(array(1,i,j,:))>0.0_r_k) then
write(*,’(A2)’,advance=’no’) ’+’

else
write(*,’(A2)’,advance=’no’) ’ ’

end if
end do
write(*,*)

end do
end if

The output of the demo program 14 advection utils should look like this when running on
2 processes:

[FD4:0000] created new fd4_domain:
[FD4:0000] dim start end blocks blksz ghosts per.bd
[FD4:0000] x 1 32 8 4.00 1 T
[FD4:0000] y 1 32 8 4.00 1 T
[FD4:0000] z 1 32 8 4.00 1 T
[FD4:0000] max. number of blocks: 512
[FD4:0000] Hilbert SFC level: 3
[FD4:0000] number of MPI processes: 2
[FD4:0000] block pool lists: 4
[FD4:0000] block pool max. size: 739
[FD4:0000] adaptive block mode: T
[FD4:0000] variable table:
[FD4:0000] id nbins nsteps dyn vnull threshld face name
[FD4:0000] 1 1 1 F 0.0E+00 - x u
[FD4:0000] 2 1 1 F 0.0E+00 - y v
[FD4:0000] 3 1 1 F 0.0E+00 - z w
[FD4:0000] 4 1 2 F 0.0E+00 1.0E-10 - c
Checking varU for consistency
Checking varV for consistency

27

Chapter 5. An FD4 Tutorial

[FD4:0000] face 2 of block at 4 4 2 is not consistent!
Checking varW for consistency
Checking varV for consistency
varC at (16,16,8) = 1.469

+ # # +
#
#
+ # # +

step 100 bal: 0.953 blocks: 14
step 200 bal: 0.906 blocks: 20
step 300 bal: 0.981 blocks: 33
step 400 bal: 0.957 blocks: 42
step 500 bal: 0.989 blocks: 54
step 600 bal: 0.977 blocks: 66
step 700 bal: 0.983 blocks: 74
step 800 bal: 0.650 blocks: 77
step 900 bal: 0.982 blocks: 87
step 1000 bal: 0.938 blocks: 92
step 1100 bal: 0.969 blocks: 102
step 1200 bal: 0.954 blocks: 112
step 1300 bal:-1.000 blocks: 121
step 1400 bal: 0.966 blocks: 131
step 1500 bal: 0.985 blocks: 143
step 1600 bal: 0.986 blocks: 153
step 1700 bal: 0.972 blocks: 162
step 1800 bal: 0.800 blocks: 167
step 1900 bal: 0.981 blocks: 175
step 2000 bal: 0.976 blocks: 186
varC at (16,16,8) = 0.000

+ + + + + + + + +
+ + + + + + + + + + + + + + + + + # + +

+ +
+ +

+ + + # # # # +
+ + # # # # +

+ + # # # # +
+ # # # # # +

+ + # # # # +
+ # # # # # +
+ # # # # # +
+ # # # # # +
+ # # # # # +

28

Chapter 5. An FD4 Tutorial

+ # # # # # # +
+ + # # # # # + + + + + + + + + + + + + + + + + +

+ # # # # # # + + + + + + + + + + + + + +
+ # # # # # # + + + + +

+ + # # # # # + + + + +
+ + + # # # + + + +

+ + + + + +

[FD4:0000] FD4 Statistics min max avg sum
[FD4:0000] Balance check us 168288 262888 215588 431176
[FD4:0000] Balance part us 27410 28679 28044 56089
[FD4:0000] Balance mig us 86703 87278 86990 173981
[FD4:0000] Balance recv Blocks 2769 2793 2781 5562
[FD4:0000] Balance recv Bytes 8251620 8323140 8287380 16574760
[FD4:0000] Domain block alloc 108 143 125 251
[FD4:0000] Domain block free 0 0 0 0
[FD4:0000] Domain ghost alloc 66 66 66 132
[FD4:0000] Domain ghost free 0 0 0 0
[FD4:0000] Couple put Bytes 47999104 99516544 73757824 147515648
[FD4:0000] Couple get Bytes 0 0 0 0
[FD4:0000] Ghostcomm Bytes 7142528 7142528 7142528 14285056

29

	Introduction
	Basic Data Structure
	Variable Table
	Block
	Domain and Iterator
	Cell-centered and Face-centered Variables
	Accessing Variable Arrays
	Accessing Variable Arrays with Ghosts
	Adaptive Block Mode
	Boundary Conditions

	Parallelization and Coupling
	Ghost Communication
	Dynamic Load Balancing
	Coupling

	Building the FD4 Library
	Prerequisites
	Configuration
	Compiling FD4

	An FD4 Tutorial
	Basics
	Variable Table Definition
	Domain Creation
	Block Iteration
	Ghost Cells
	Ghost Data Exchange
	Vis5D Output
	NetCDF Output
	Boundary Conditions
	Coupling Interface I
	Coupling Interface II
	Dynamic Load Balancing
	Adaptive Block Mode
	Utilities

