

Übungen zur Vorlesung Mathematik II/1 (inkl. Kurzlösung) 6. Woche – Laplace-Transformation, Partialbruchzerlegung

Laplace-Transformation

7.VI.3 a,c s. Übungsheft Funktionentheorie, S. 33 Kurzlösung:

a)
$$f(t) = \begin{cases} 0, & t < a \\ t - a, & a \le t \le b \end{cases} \Rightarrow \mathcal{L}\{f(t)\} = \frac{1}{s^2} (e^{-as} - e^{-bs})$$

 $(b - a), t > b$

c)
$$\mathcal{L}{f(t)} = A\frac{1}{s} - 2A\frac{1}{s}e^{-as} + A\frac{1}{s}e^{-2as}$$
,

A1 Ermitteln Sie die Lösung der folgenden DGL mit Hilfe der Laplace-Transformation

$$\dot{x}(t) + 5x(t) = \mathbf{1}(t)$$
 mit $x(0) = 0$.

Gehen Sie dabei analog VL Bsp. 13.11 vor:

- (a) Geben Sie die Laplace-Transformierte der DGL an.
- (b) Lösung Sie (a) nach X(s) auf.
- (c) Ermitteln Sie die Partialbruchzerlegung von (b) und
- (d) Rücktransformieren Sie (c).

Kurzlösung:

(a)
$$sX(s) + 5X(s) = \frac{1}{s}$$

(d)
$$X(t) = \frac{1}{5} (\mathbf{1}(t) - \mathbf{1}(t) e^{-5t}).$$

A2 Überprüfen Sie den Faltungssatz, VL Satz 13.12 für die in der Tabelle gegebenen Signale f(t), g(t), indem Sie

- i Faltung (f * g)(t) berechnen,
- ii die Laplace-Transformierten der drei Signale f(t), g(t) und (f*g)(t) ermitteln (ggf. Tabellen nutzen) und

iii überprüfen, ob das Produkt der ersten beiden Laplace-Transformierten $\mathcal{L}(f)(s)$ · $\mathcal{L}(g)(s)$ gleich der dritten $\mathcal{L}(f*g)(s)$ ist.

Hinweise: Für (c,d) ist g(t) ein beliebiges Signal mit $g(t) \circ - G(s)$. $\delta(t)$ ist der Dirac-Impuls.

Merke: Faltung im Zeitbereich ∘ Produkt im Bildbereich.

Kurzlösung:

	f(t)	g(t)	(f*g)(t)	$\mathcal{L}(f)(s)$	$\mathcal{L}(g)(s)$	$\mathcal{L}(f * g)(s)$	$\mathcal{L}(f)(s) \cdot \mathcal{L}(g)(s) = \mathcal{L}(f * g)(s)$
(a)	1 (t)	1 (t)	t 1 (t)	$\frac{1}{s}$	$\frac{1}{s}$	$\frac{1}{s^2}$	√
(b)	1 (t)	t 1 (t)					\checkmark
(c)	1 (t)	g(t)	$\int_0^t g(\tau) \mathrm{d} \tau$	$\frac{1}{s}$	G(s)	, (*)	✓
(d)	$\delta(t)$	g(t)	g(t)	1	G(s)	G(s)	\checkmark

(*) Ableitungsregel 'rückwärts' = Integrationsregel.

Partialbruchzerlegung (PBZ)

A3 PBZ für einfache Pole

Man zerlege f(z) in Partialbrüche.

$$f(z) = \frac{(3-i)z - 5}{(z+i)(z-2)}$$

Vergleichen Sie Ihr Ergebnis mit dem Wert, den Sie erhalten, wenn Sie einen Pol von f(z) streichen und in den 'Rest' die Polstelle einsetzen.

Kurzlösung:

$$f(z) = \frac{3}{z+i} - \frac{i}{z-2}.$$

Zusatz: A ist das später so gefragte Residuum

Die Funktion f(z) soll in Partialbrüche zerlegt werden.

(a)
$$f(z) = \frac{\text{Z\"{a}hler}}{(z - z_{\text{Pol}})(\text{Nenner-Rest})} = \frac{A}{(z - z_{\text{Pol}})} + \dots$$

(b)
$$f(z) = \frac{\text{Z\"{a}hler}}{(z - z_{\text{Pol}})^2(\text{Nenner-Rest})} = \frac{A}{(z - z_{\text{Pol}})} + \frac{B}{(z - z_{\text{Pol}})^2} + \dots$$

Geben Sie für (a) und (b) ein Verfahren (eine allgemeine Formel) zur Berechnung von A an. Sie dürfen

- f(z) mit geeigneten Termen multiplizieren,
- ggf. nach einer geeigneten Variablen ableiten und
- einen geeigneten Wert für z einsetzen.

Kurzlösung:

(a)
$$A = f(z)(z - z_{Pol})|_{z=z_{Pol}}$$
,

(b)
$$A = \frac{d}{dz} f(z) (z - z_{Pol})^2 \Big|_{z=z_{Pol}}$$
.

A ist das später so gefragte Residuum.

Kurven in der komplexen Ebene

A4 Ortskurven

In der VL Dynamische Netzwerke lernen Sie Ortskurven kennen - das sind Kurven, die Orte in der komplexen Ebene verbinden, die von einer reellen Variablen, z.B. von $t \in \mathbb{R}$ in der Geradengleichung $z = z_0 + tz_1$ abhängen.

- (a) Zeichnen Sie die Ortskurve von $z = z_0 + tz_1$ für zwei selbst gewählte komplexe Zahlen z_0, z_1 für $t \ge 0$.
- (b) Zeichnen Sie die Ortskurve von $z=R+\mathrm{i}\omega L$ für (konstante) reelle R,L>0 mit (variablem) $\omega\geq0$.
- (c) Zeichnen Sie die Ortskurve von $z = R + i\omega L$ für (konstante) reelle $\omega, L > 0$ mit (variablem) $R \ge 0$.

Kurzlösung:

- (a) 'schräge' Halbgerade von z_0 in Richtung z_1 .
- (b) 'senkrechte' Halbgerade.

(c) 'waagerechte' Halbgerade.

7.1.24 a) $\alpha,\beta,$ Zusatz: γ,δ s. Übungsheft Funktionentheorie, S. 5 Kurzlösung:

- (a) a) positive imaginäre Achse;
 - b) negative imaginäre Achse;
 - c) $x = 1 \longrightarrow z = 1 + it \longrightarrow w = (1 + it)^2 = 1 t^2 + i2t = u + iv$
 - c) $x = 1 \longrightarrow z = 1 + it \longrightarrow w = (1 + it)^2 = 1 t^2 + i2t = u + iv$ mit $u = 1 t^2$, v = 2t. Folglich ist $t^2 = 1 u = \frac{v^2}{4}$, also $u = 1 \frac{v^2}{4}$ Parabel; d) $y = -1 \longrightarrow z = t i \longrightarrow w = (t i)^2 = t^2 1 i2t = u + iv$ mit $u = t^2 1$, v = -2t. Folglich ist $t^2 = u + 1 = \frac{v^2}{4}$, also $u = \frac{v^2}{4} 1$ Parabel;