

Übungen zur Vorlesung Mathematik I/1

7. Woche – Polynome: Horner - Schema, Interpolation, Exponential- und Logarithmus-Funktionen

Polynome: Horner - Schema

- A1 Machen Sie sich klar, dass mit dem Horner-Schema tatsächlich der Funktionswert eines Polynoms an der Stelle x_0 berechnet wird, vgl. Bsp. 3.7 in VL 3.2.
- A2 Führen Sie die Polynomdivision aus Bsp. 3.20 (Fortsetzung) VL 3.3 mittels zweier Polynomdivisionen durch einen Linearfaktor (einmal durch (x-1) und dann durch (x+2)) mit Horner-Schema aus.
- Zusatz: Machen Sie sich klar, warum das Berechnen eines Funktionswertes eines Polynoms an der Stelle x_0 mit dem Horner-Schema genau die Polynomdivision durch den Linearfaktor $(x-x_0)$ realisiert, indem Sie
 - (a) den Zusammenhang zwischen den Polymonkoeffizienten a_i , $i = 0, \dots n$ und den Koeffizienten des 'Ergebnispolynoms' b_i , $i = 1, \dots n$ aus dem Horner-Schema ablesen:
 - (b) sowie aus der Gleichung in Bem. 3.10 VL 5_2

$$P_n(x) = (x - x_0)P_{n-1}(x) + b_0$$
 mit $P_{n-1}(x) = b_n x^{n-1} + \dots + b_2 x + b_1$

durch Vergleich der Koeffizienten vor x^i der linken und rechten Seite einen Zusammenhang zwischen a_i (Koeffizienten von $P_n(x)$) und b_i (Koeffizienten von $P_{n-1}(x)$) feststellen: $a_i = \dots$

(c) sich überzeugen, dass die Ergebnisse von (a) und (b) zueinander equivalent sind.

Beispiel:

	2	4	-4	-8	2	4		
$x_0 = 1$		2	6	2	-6	-4		
	2	6	2	-6	-4	0	$= P_5(1)$	$\Rightarrow P_5(x) = (x-1)(2x^4 + 6x^3 + 2x^2 - 6x - 4)$
allgemein	a_n			a_i		a_0		
x_0		x_0b_n		x_0b_{i+1}		x_0b_1		
	b_n		b_{i+1}	b_i	b_1	0	$= P_n(x_0)$	$\Rightarrow P_n(x) = (x - x_0)(b_n x^{n-1} + \dots + b_1)$
bzw.	a_n			a_i		a_0		
x_0		x_0b_n		x_0b_{i+1}		x_0b_1		
	b_n		b_{i+1}	b_i	b_1	b_0	$= P_n(x_0)$	$\Rightarrow P_n(x) = (x - x_0)(b_n x^{n-1} + \dots + b_1) + b_0$

Polynom-Interpolation

A4 Ist $P(x) = x^2 - 2$ das Interpolationspolynom zu den Stützstellen $\frac{x_i \mid 0 \quad 1 \quad 2}{y_i \mid -2 \quad -1 \quad 2}$?

Exponential- und Logarithmus-Funktionen

A5 Sind Ihnen die folgenden Potenzgesetze klar

$$a^{x+y} = a^x \cdot a^y, (a^x)^2 = a^{2x}$$
 bzw. $(a^x)^n = a^{nx}$ sowie $a^{1/2} = \sqrt{a}$?

Illustrieren Sie sich die Gesetze mit kleinen Beispielen, z.B. $2^{3+4} = \dots$

A6 Geben Sie die Logarithmen in der Tabelle an.

	$\log_{10}(10)$	$\log_{10}(1)$	$\log_{10}(100)$	$\log_{100}(10)$	$\log_{10}(0.1)$	$\left \log_{10}(\sqrt{1000})\right $
=						
=	$\log_2(?)$	$\log_2(?)$	$\log_2(?)$	$\log_{?}(2)$	$\log_2(?)$	$\log_2(?)$

Wählen Sie nun die Werte für die '?' in der dritten Zeile so, dass die Logarithmen die gleichen Werte (wie die aus Zeile 1 der Tabelle) annehmen.

A7 Verinnerlichen Sie die (z.B. in der Informationstheorie) immer wieder gebrauchten Logarithmusgesetze aus VL 3_5:

$$\forall x, y, a > 0$$
: $\log_a(x \cdot y) = \log_a(x) + \log_a(y)$

sowie die Folgerung

$$\log_a(x^2) = 2\log_a(x)$$
 bzw. $\log_a(x^n) = n\log_a(x)$

mittels kleiner Beispiele, z.B. $\log_2(2^3\cdot 2^4)=\dots$