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Linear Classifiers (recap)

A building block for almost all —a mapping f: R" — {+1, -1},
a partitioning of the input space into half-spaces that correspond to
classes.
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Decision rule: y = f(z) = sgn({z, w) — b)
w is the normal to the hyper plane (z, w) = b
(Synonyms — Neuron model, Perceptron etc.)
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Two learning tasks

Let a training dataset X = ((;1:?-,: i) . . ) be given with
(i) data z: € R™ and (ii) classes v € {—1,+1}

The goal is to find a hyper plane that separates the data (correctly)

yi - [(w,25) + ) >0 Vi

Now: The goal is to find a “corridor”
(stripe) of the maximal width that
separates the data (correctly).
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Linear SVM

Remember that the solution is defined only
up to a common scale

— Use canonical (with respect to the
learning data) form in order to avoid
ambiguity:

min|(w, z;) + b| =1

(3

The margin: (w, 2"y +b=4+1, (w,2")+b=-1
(w, ' — 2"y =2
(w/llwll, 2 — ") = 2/||w
The optimization problem: |
|w|]? — I]]i%jl

st oy - [{w,z) +b] > 1 Vi
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Linear SVM

The Lagrangian of the problem:

1
L(w, b,a) = =||w||? — E a; - (y; - [(w, z;) + b] — 1) — max min
2 _ a w,b
T

¥y :_3’ 0 Vi

The meaning of the dual variables «:

a) wyi-[(w,z;)+ bl — 1 < 0 (aconstraint is broken) = maximization
wrt. a; gives: a; — oo, L(w, b,a) — oo (surely not a minimum)

b) vi-[(w,z;) +b] —1 >0 — maximization wrt. «; gives a; =0 —
no influence on the Lagrangian

c) vi-[(w,z)+ b —1=0 — «; does not mater, the vector z; is
located “on the wall of the corridor” — Support Vector
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Linear SVM

Lagrangian:

1
L(w, b, o) = 5\ wl|? — Z o+ (yi - [(w, z3) +

i
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oL _
— = w — E a;y;r; = 0
Ow -

)]
w = E YLy

1

Derivatives:

The solution is a linear combination of the data points.

bl —1)
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Linear SVM

Substitute w = Z a;y;x; into the decision rule and obtain

i

flz) = qgn({:&, w) + b) — qgn(<;‘f_, Z a—-?-_y?-_;zzi> + b) —
sgn (Z aiyilz, ;) + b)

T

— the vector w is not needed explicitly !!!

The decision rule can be expressed as a linear combination of
scalar products with support vectors.

Only strictly positive «; (i.e. those corresponding to the support
vectors) are necessary for that.
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Linear SVM

Substitute Z aiyi = 0

1
w = E g Yq Iy
1

into the Lagrangian
1
L(w, b, a) = Z[lw]|* - Z ai - (yi- [(w, z:) + b] — 1)

and obtain the dual task

E ap— — E ;oYY (T, ;) —:»11135{

i

s.t. a; = 0, E a;y; = 0

— can also be expressed in terms of scalar products only, the data
points =i are not explicitly necessary.
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Feature spaces

1. The input space X is mapped onto a feature space H by a non-
linear transformation ® : X — H

2. The data are separated (classified) by a linear decision rule in the
feature space

Example: quadratic classifier f(z) =sgn(a-z? +b- 2122 + ¢ - 23)

The transformation is d:R%2 5 R3
P(x1,a2) = (;1:12, V211 T2, 12)

(the images ®(x) are separable in the feature space)
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Feature spaces

The images ®(z) are not explicitly necessary in order to find the
separating plane in the feature space, but their scalar products

(®(z), P(z"))

For the example above:

<(I?*(:r:1, 12), P(21, :::té)> = <(5':‘12 V2x119, 25), (232, V2x] b :ﬂ’f}) =
:1512 ;1{2 + 211719 ;I:i :1?.;2 - ;1?22 :1:52 —
(zy2] + 2025)? = (z,2/)° = k(z,2))

— the scalar product can be computed in the input space, it is not
necessary to map the data points onto the feature space explicitly.

Such functions k(z,z") are called Kernels.
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Kernels

Kernel is a function £ : X x X — R that computes scalar product in a
feature space

k(z,x') = <{I}($)= {I}(iljﬁ)>

Neither the corresponding space H nor the mapping & : X — H
need to be specified thereby explicitly = “Black Box”.

Alternative definition: if a function & : X x X — R is a kernel, then
there exists such a mapping ¢ : X — A, that ... The corresponding
feature space H is called the Hilbert space induced by the kernel k& .

Let a function £ : X x X — R be given. Is it a kernel?
— Mercer’s theorem.
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Kernels

Let k; and k> be two kernels.

Than aky, ki + ko, ki1 ko are kernels as well
(there are also other possibilities to build kernels from kernels).

Popular Kernels:
 Polynomial: k(z, ') = ((:1:, 7'y + c)d
* Sigmoid: k(z,2') = tanh(&{:ﬁ, ') + (%))

* @Gaussian: k(z,2') = Cxp(—H:r — ;1:’\\2/(252)) (interesting : H = R )
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An example

252

The decision rule with a Gaussian kernel k(z,z') = exp {_ —”I—I'H'}

B * ° f(z)>1

®e
Support Vectors (ay>0)
 J

R
‘\

Support Vectors (ay{Or
flx)<-1 T m)——

f(z) =sgn(f'(z)) = sgn Z Yicri exp {—

i
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Conclusion

SVM is a representative of discriminative learning —i.e. with all
corresponding advantages (power) and drawbacks (overfitting) —
remember e.g. the Gaussian kernel with ‘H = R~

The building block — linear classifiers. All formalisms can be
expressed in terms of scalar products — the data are not needed
explicitly.

Feature spaces — make non-linear decision rules in the input
spaces possible.

Kernels — scalar product in feature spaces, the latter need not be
necessarily defined explicitly.
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