Machine Learning

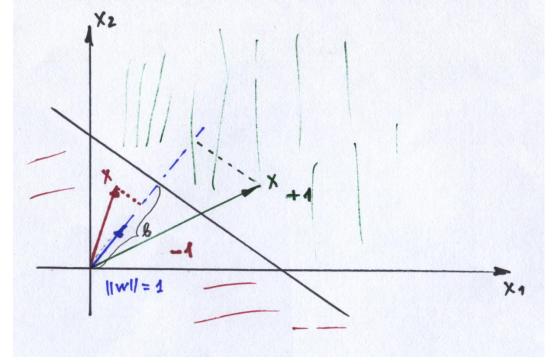
Support Vector Machines

05/01/2014

Linear Classifiers (recap)

A building block for almost all – a mapping $f:\mathbb{R}^n \to \{+1,-1\}$, a partitioning of the input space into half-spaces that correspond to

classes.



Decision rule: $y = f(x) = \operatorname{sgn}(\langle x, w \rangle - b)$ w is the **normal** to the hyper plane $\langle x, w \rangle = b$ (Synonyms – Neuron model, Perceptron etc.)

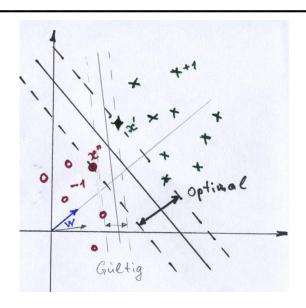
Two learning tasks

Let a training dataset $X = ((x_i, y_i)...)$ be given with

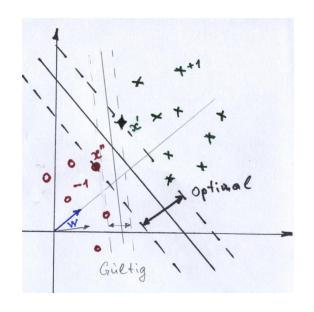
(i) data $x_i \in \mathbb{R}^n$ and (ii) classes $y_i \in \{-1, +1\}$

The goal is to find a hyper plane that separates the data (correctly)

$$y_i \cdot [\langle w, x_i \rangle + b] \ge 0 \ \forall i$$



Now: The goal is to find a "corridor" (stripe) of **the maximal width** that separates the data (correctly).



Remember that the solution is defined only up to a common scale

→ Use canonical (with respect to the learning data) form in order to avoid ambiguity:

$$\min_{i} |\langle w, x_i \rangle + b| = 1$$

The **margin**:

$$\langle w, x' \rangle + b = +1, \quad \langle w, x'' \rangle + b = -1$$

 $\langle w, x' - x'' \rangle = 2$
 $\langle w/||w||, x' - x'' \rangle = 2/||w||$

The optimization problem:

$$||w||^2 \to \min_{w,b}$$

s.t. $y_i \cdot [\langle w, x_i \rangle + b] \ge 1 \quad \forall i$

The Lagrangian of the problem:

$$L(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i} \alpha_i \cdot (y_i \cdot [\langle w, x_i \rangle + b] - 1) \to \max_{\alpha} \min_{w, b}$$

 $\alpha_i \ge 0 \ \forall i$

The meaning of the dual variables α :

- a) $y_i \cdot [\langle w, x_i \rangle + b] 1 < 0$ (a constraint is broken) \rightarrow maximization wrt. α_i gives: $\alpha_i \to \infty$, $L(w, b, \alpha) \to \infty$ (surely not a minimum)
- b) $y_i \cdot [\langle w, x_i \rangle + b] 1 > 0 \rightarrow \text{maximization wrt. } \alpha_i \text{ gives } \alpha_i = 0 \rightarrow \text{no influence on the Lagrangian}$
- c) $y_i \cdot [\langle w, x_i \rangle + b] 1 = 0 \rightarrow \alpha_i$ does not mater, the vector x_i is located "on the wall of the corridor" **Support Vector**

Lagrangian:

$$L(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i} \alpha_i \cdot (y_i \cdot [\langle w, x_i \rangle + b] - 1)$$

Derivatives:

$$\frac{\partial L}{\partial b} = \sum_{i} \alpha_{i} y_{i} = 0$$

$$\frac{\partial L}{\partial w} = w - \sum_{i} \alpha_{i} y_{i} x_{i} = 0$$

$$w = \sum_{i} \alpha_{i} y_{i} x_{i}$$

The solution is a linear combination of the data points.

Substitute $w = \sum_{i} \alpha_{i} y_{i} x_{i}$ into the decision rule and obtain

$$f(x) = \operatorname{sgn}(\langle x, w \rangle + b) = \operatorname{sgn}(\langle x, \sum_{i} \alpha_{i} y_{i} x_{i} \rangle + b) =$$

$$\operatorname{sgn}\left(\sum_{i} \alpha_{i} y_{i} \langle x, x_{i} \rangle + b\right)$$

 \rightarrow the vector w is not needed explicitly !!!

The decision rule can be expressed as a linear combination of scalar products with support vectors.

Only strictly positive α_i (i.e. those corresponding to the support vectors) are necessary for that.

Substitute

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$w = \sum_{i} \alpha_i y_i x_i$$

into the Lagrangian

$$L(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i} \alpha_i \cdot (y_i \cdot [\langle w, x_i \rangle + b] - 1)$$

and obtain the dual task

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{ij} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle x_{i}, x_{j} \rangle \to \max_{\alpha}$$

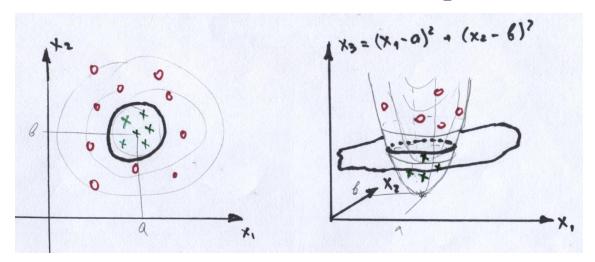
s.t.
$$\alpha_i \ge 0$$
, $\sum_i \alpha_i y_i = 0$

 \rightarrow can also be expressed in terms of scalar products only, the data points x_i are not explicitly necessary.

Feature spaces

- 1. The input space $\mathcal X$ is mapped onto a feature space $\mathcal H$ by a nonlinear transformation $\Phi: \mathcal X \to \mathcal H$
- 2. The data are separated (classified) by a linear decision rule in the feature space

Example: quadratic classifier $f(x) = \operatorname{sgn}(a \cdot x_1^2 + b \cdot x_1 x_2 + c \cdot x_2^2)$



The transformation is

$$\Phi: \mathbb{R}^2 \to \mathbb{R}^3 \Phi(x_1, x_2) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

(the images $\Phi(x)$ are separable in the feature space)

Feature spaces

The images $\Phi(x)$ are not explicitly necessary in order to find the separating plane in the feature space, but their scalar products

$$\langle \Phi(x), \Phi(x') \rangle$$

For the example above:

$$\left\langle \Phi(x_1, x_2), \Phi(x_1', x_2') \right\rangle = \left\langle (x_1^2, \sqrt{2}x_1 x_2, x_2^2), (x_1'^2, \sqrt{2}x_1' x_2', x_2'^2) \right\rangle = x_1^2 x_1'^2 + 2x_1 x_2 x_1' x_2' + x_2^2 x_2'^2 = (x_1 x_1' + x_2 x_2')^2 = \langle x, x' \rangle^2 = k(x, x')$$

→ the scalar product can be computed in the input space, it is not necessary to map the data points onto the feature space explicitly.

Such functions k(x, x') are called **Kernels**.

Kernels

Kernel is a function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ that computes scalar product in a feature space

$$k(x, x') = \langle \Phi(x), \Phi(x') \rangle$$

Neither the corresponding space \mathcal{H} nor the mapping $\Phi: \mathcal{X} \to \mathcal{H}$ need to be specified thereby explicitly \to "Black Box".

Alternative definition: if a function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel, then there exists such a mapping $\Phi: \mathcal{X} \to \mathcal{H}$, that ... The corresponding feature space \mathcal{H} is called the **Hilbert space induced** by the kernel k.

Let a function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be given. Is it a kernel?

→ Mercer's theorem.

Kernels

Let k_1 and k_2 be two kernels.

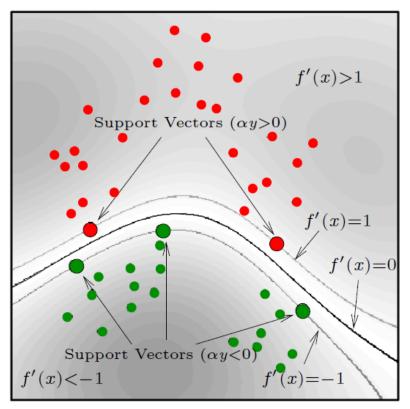
Than αk_1 , $k_1 + k_2$, $k_1 k_2$ are kernels as well (there are also other possibilities to build kernels from kernels).

Popular Kernels:

- Polynomial: $k(x, x') = (\langle x, x' \rangle + c)^d$
- Sigmoid: $k(x, x') = \tanh(\kappa \langle x, x' \rangle + \Theta)$
- Gaussian: $k(x, x') = \exp(-\|x x'\|^2/(2\sigma^2))$ (interesting: $\mathcal{H} = \mathbb{R}^{\infty}$)

An example

The decision rule with a Gaussian kernel $k(x, x') = \exp \left| -\frac{\|x - x'\|^2}{2\sigma^2} \right|$



$$f(x) = \operatorname{sgn}(f'(x)) = \operatorname{sgn}\left(\sum_{i} y_{i}\alpha_{i} \exp\left[-\frac{\|x - x_{i}\|^{2}}{2\sigma^{2}}\right]\right)$$

Conclusion

- SVM is a representative of **discriminative learning** i.e. with all corresponding advantages (power) and drawbacks (overfitting) remember e.g. the Gaussian kernel with $\mathcal{H} = \mathbb{R}^{\infty}$
- The building block linear classifiers. All formalisms can be expressed in terms of scalar products – the data are not needed explicitly.
- Feature spaces make non-linear decision rules in the input spaces possible.
- Kernels scalar product in feature spaces, the latter need not be necessarily defined explicitly.

Literature (names):

- Bernhard Schölkopf, Alex Smola ...
- Nello Cristianini, John Shawe-Taylor ...

