Mutual Influence of Application- and Platform-Level
Adaptations on Energy-Efficient Computing

Kateryna Rybina, Waltenegus Dargie, René Schone, Somayeh Malakuti

Faculty of Computer Science, Technical University of Dresden, 01062 Dresden, Germany
Email: {kateryna.rybina, waltenegus.dargie, rene.schoene, somayeh.malakuti } @tu-dresden.de

Abstract—We experimentally investigate the mutual influence
of application- and platform-level adaptations in a virtualized
cluster environment. At the application level, applications can
adapt to a changing execution environment by dynamically ex-
changing components that enable them to trade energy for utility
and vice versa. Likewise, at the platform level, virtual machine
monitors can migrate virtual machines from one server to another
either to consolidate workloads and switch-off underutilized
servers or to distribute the workload of overloaded servers. Our
experiment quantify impacts of various types of adaptations on
QoS, power consumption, and energy-overhead.

Keywords—Adaptation, cloud computing, energy-efficient com-
puting, virtualization, virtual machines migration, migration costs

I. INTRODUCTION

Internet servers and data centers consume a large amount
of energy even though most of them are underutilized much
of the time. For example, in a typical Twitter server, CPU
utilization is less than 20% and RAM utilization is between
40% and 50% [I]. Likewise, in a typical Google server, CPU
utilization is between 25% and 35% and RAM utilization is
approximately 40% [2]. In Amazon’s EC2 cloud environment,
the CPU utilization per server is between 3% and 17% [B]. It
must be remarked that the idle power consumption of a server
is between 50% and 60% of its peak power consumption [4],

[5].

Different dynamic power management strategies can be
implemented at various levels of abstractions to optimize
energy consumption. At the operating system level, an energy-
aware scheduler can perform dynamic task scheduling or
dynamic voltage and frequency scaling [&], [6], [[Z]. Decisions
made by the operating system usually have a scope of seconds
and milliseconds or even less. In virtualized environments,
idle or underutilized servers can entirely be turned off by
first migrating the virtual machines to servers which can be
optimally loaded. The same approach can be employed to
achieve load balancing. This type of adaptation, known in the
literature as server or workload consolidation [R], has a scope
of several minutes or hours. Similarly, at the application level,
application-specific decisions can be made to utilize resources
efficiently, such as prioritizing tasks and user requests as well
as trading quality of service for energy and vice versa.

An interesting research challenge is how to benefit from
the gains that can be obtained from all levels of abstraction.
The challenge primarily stems from the fact that the hardware
resources (the servers), the distributed execution platform (the

virtual machines), and the applications may belong to different
owners and each may have a different view of the whole
system. For example, the application provider has a sufficient
knowledge of the workload that can be generated by its
users but does not have sufficient knowledge pertaining to
the resource distribution at the hardware level. Similarly, at
the platform level, the virtual machine monitor has sufficient
knowledge of the resource utilization statistics of the whole
server but may only indirectly infer — from resource utilization
— the workload statistics at the application level. It may not
know, however, the various adaptation strategies the applica-
tion provider may have at its disposal. Therefore, it is desirable
to investigate the extent to which energy-aware adaptations
at different levels of abstraction influence each other and
whether they can be coordinated in a meaningful way, so
that optimal energy saving can be attained and foreseeable
side-effects can be mitigated. In this paper, we experimentally
investigate the mutual influence of energy-aware adaptations
at the application and platform levels and their contribution to
minimize the overall energy consumption of a server. At the
application level, we consider the dynamic reconfiguration of
application components by switching to different variants or
implementations to deal with changes in resource availability
or quality of service. At the platform level, we migrate virtual
machines to manage underutilized and overloaded servers.

The rest of this paper is organized as follows. In Section M,
we provide background information concerning application
and platform-level adaptations and their mutual influence. In
Section M, we describe in detail our experiment setting and
the experiments we carried out. In Section M, we analyze
the results of the experiment and interpret them. Finally, in
Section M, we provide concluding remarks and outline our
future work.

II. BACKGROUND

One of the mechanisms widely used to make applications
energy-aware is to provide them with multiple alternative
components from which they can dynamically choose and
reconfigure themselves [U]. The components should enable
the application to trade energy for utility and vice versa.
For example, the different components can have different
resource requirements and, as a result, different quality of
service (QoS). Gotz et al. [T0] propose the notion of energy
contracts with which they specify the relationship between the
resource consumption of an application component and the
QoS that can be achieved with it. This contract along with
linear-integer programming is used to optimally configure an

application. Similarly, Cohen et al. [I1] propose the notion
of “energy types” (special forms of data types in program-
ming languages) as means to represent multiple variants of
applications by labeling data and operations with resource
consumption information and execution phases of applications,
which have distinct patterns of energy consumption. Malakuti
and Wilke [I7] propose “energy aspects” to implement energy-
aware features into legacy applications in a modular fashion.
Sampson et al. [[[3] provide a mechanism for programmers to
annotate whether an operation requires an approximate or a
precise computation. For precise computation ample resources
are required in contrast to approximate computation.

In a virtualized environment, application-level adaptations
can be complemented by VM-level adaptations (for VM-level
adaptation, refer, for example, to [[4], [T5], [T6]). Whereas the
benefits of application- and VM-level adaptations have been
investigated separately, we investigate them jointly. For our
prototype we used video transcoding in a video hosting appli-
cation (such as YouTube) and different versions of off-the-shelf
transcoders — FFMPEG, MENCODER, and HANDBRAKE. The
transcoders have different resource consumption characteristics
as well as transcoding speed. Users upload videos of different
formats and sizes to the hosting application, so that they can
be viewed by other users. However, viewers may request the
videos in different formats and, therefore, it is the task of the
application to transform the videos from their original formats
to different popular formats and store them.

Often video transcoding takes place as a background
batch job, giving the application as well as the platform
ample opportunity for resource- and energy-aware adaptations.
During video transcoding, the application can trade perfor-
mance (transcoding time) for energy/resource consumption (or
vice versa) without compromising the quality of the videos
by choosing different types of transcoders. Fast transcoders
usually consume a large amount of resources as well as
energy while slow transcoders have longer transcoding time
but consume less resources. When the physical server is
underutilized, it is reasonable to choose fast transcoders, so
that as many videos as possible can be transcoded in a short
time, but when the server is overloaded, slow transcoders can
be chosen. However, despite these choices, a server can still
remain underutilized or overloaded and the platform which
hosts and manages the virtual machines can decide to migrate
them. In doing so, the performance of some of the applications
being migrated can be affected. It is this mutual influence we
would like to investigate.

III. EXPERIMENT SETTING

For our experiment, we employed two “homogeneous”
servers and a network attached storage connected with each
other via a Gigabit Ethernet switch. The two servers run Fedora
15 (Linux kernel v. 2.6.38, x86_64) as operating system, KVM
as hypervisor and 1ibvirt for managing platform virtualiza-
tion and virtual machines. Each server employs two Intel i5-
680 dual core 3.6 GHz processors, 4 GB DDR3-1333 SDRAM
memory and a Gigabit Ethernet Network Interface Card (NIC).
The NAS system consists of Intel Xeon E5620 Quad-Core
2.4 GHz processor, 10 GB DDR3-1333 SDRAM memory and
Gigabit Ethernet NIC. To measure the overall power consump-
tion of both servers, we used Yokogawa WT210 digital power

analyzers. We created four virtual machines. Three of these run
the 1ookbusy benchmark, which generates a synthetic, fixed
and predictable amount of workload on CPUs and keep chosen
amounts of memory active (this way, we could underutilize
or overload servers). The fourth virtual machine runs one of
the transcoders. Each virtual machine is allocated a single
virtual core but the RAM allocation varies: For the three
virtual machines running the benchmarks we reserved 400 MB,
600 MB, and 800 MB RAM, whereas for the transcoder
application we reserved 1200 MB. We reserved a 100 MBps
network bandwidth for the live migration of virtual machines.
For all the experiments, the transcoders converted a 3.4 MB
video file from VP6 to MPEG4 format. The target video has
640 x 320 pixels resolution. Requests to convert video files
are generated at a fixed interval of 21 seconds. To obtain CPU
and memory usage statistics, we ran dstat on both servers
and the virtual machines.

A. Experiment Scenarios

We aim to measure the mutual influence of the application-
and platform-level adaptations by quantifying the energy-
utility trade-offs during adaptation. A utility refers to the
quality of service that can be obtained for a particular sys-
tem configuration or energy budget. In our experiment, we
considered two extreme scenarios which are the causes of
adaptations, namely, system underutilization and overload. We
use empirical thresholds to specify these scenarios: If the
average CPU utilization of a server is above 90%, we describe
this as an overload condition because the system becomes
noticeably slow. On the other hand, if the supply of CPU
cycles in both servers is greater than the CPU cycles being
utilized by all virtual machines, then we consider the servers as
underutilized. These definitions are valid under the assumption
that there is no resource bottleneck elsewhere. If, on the other
hand, the the average CPU utilization of one of the servers is
less than (100% — the average CPU utilization of the other
server), we consider the first server as underutilized because
its workload can be transferred to the second and it can be
switched off. Alternatively, the underutilized server can replace
a slow transcoder by a fast transcoder and increase its CPU
utilization. We considered both application-level adaptation
(binding to different transcoders) and VM-level adaptation
(live migration of virtual machines) to deal with underutilized
or overloaded conditions and evaluated the effects of these
adaptation strategies on the power and energy consumptions
of the servers as well as the video transcoding time.

In the underutilized scenario VM 4 (running one of the
transcoders) executed in the first server while the remaining
three virtual machines executed in the second. In the overload
scenario, all four virtual machines executed on the second
server while the first server was turned off. The workloads
of the virtual machines vary over time in a controlled fashion
to create a transition from an underutilized condition to an
overloaded condition and vice versa.

IV. EVALUATION

A. Underutilized Scenario

When the demand for computing resources is less than
the supply of resources, either the active virtual machines

10,0 4
9,0
8,0 -
7,0
6,0
50 -
4,0
3,0
2,0
1,0 4
0,0

88
7,8 7,8

Average migration time, sec

ffmpeg handbrake mencoder

Type of transcoder executing in VM 4

Fig. 1: The average time required to migrate virtual machines
encapsulating the three different transcoders. In all the cases,
the network bandwidth during migration was 100 MBps.

can request more resources in order to increase their speed
of execution or resources can be switched-off to reduce their
idle power consumption. The best way to reduce idle power
consumption is to switch-off an entire server. To do so, all
the virtual machines it hosts should first be migrated without
stopping the applications from executing. The price of work-
load consolidation has four dimensions: the virtual machine
migration latency (duration), a potential deterioration in the
quality of the service being provided, the power consumption
of both the source and target servers due to the need to coor-
dinate migration, and the energy-overhead of virtual machine
migration. In the underutilized scenario, we migrated VM 4
from Server 1 to Server 2 and shut down Server 1.

1) Migration Time: The migration time is defined as the
time interval between the point at which the migration starts
at the source server and the point at which the virtual machine
begins execution at the target server. Live migration has two
phases: In the first phase, the RAM content and the state of the
virtual machine are iteratively copied to the target server while
the VM executes in the source server. In the second phase, the
VM is stopped briefly to prevent further memory updates, the
latest updates are copied to the target server, and the VM is
started in the target server [[[7], [IR]. These phases require
computation and communication resources and introduce VM
down-time (phase two). As a result, the application’s quality
of service may degrade. Figure [shows the time required to
migrate VM 4 from Server 1 to Server 2 when the VM was
executing the three transcoders and when both servers were
underutilized. The migration time is higher for HANDBRAKE,
because it uses the largest amount of memory.

2) Impact of Migration on QoS: Figure D shows the im-
pacts of VM migration on transcoding time. The transcoding
time increased slightly for all the transcoders during migration.
For example, it took 17.4 seconds on average for FFMPEG
to transcode a single video when there was no migration but
with migration it took on average 20.3 seconds. The migration
time of VM 4 when FFMPEG was executing was 7.8 seconds
on average (see Figure M). This means, that the transcoder
executed approximately 12.5 seconds in Server 2 and it had to
share resources with the three virtual machines (overall CPU
utilization of Server 2 exceeded 60% after the migration of
VM 4). Consequently, transcoding time increased.

3) Power Consumption: Figure B shows the power con-
sumption of both Server 1 and Server 2 in the underutilization

~
n
°

~
o
°

-
o
°

m Before migr.

=
o
°

During migr.

Average transcoding time, sec
v
°

o
°

ffmpeg handbrake mencoder

Type of transcoder executing in VM 4

Fig. 2: The average transcoding time of the three transcoders
during migration when one of the servers was underutilized.

54,1
51,7
497 496
26,3
] I I N

s1_before 52_before s1_migr. s2_migr. s2_after

~ w N n £y
S S S S S
° ° ° ° °

Average power consumption per second, W
s
=4

°
°

Fig. 3: The average power consumption of both servers for the
underutilized scenario when HANDBRAKE was running.

scenario in five different experimental settings. HANDBRAKE
was used as transcoder inside VM 4. The power consumption
of both servers has been low before migration but during
migration it increased. Since Server 1 was switched-off after
migration, the power consumption of Server 2 is of interest af-
ter migration. As expected, the power consumption of Server 2
increased to accommodate VM 4 but by approximately 4 W
only, clearly showing the benefit of server consolidation when-
ever this is possible, because running both Servers requires
45 W more than running only Server 2, as shown in Figure B.

4) Energy Overhead: The energy overhead of migration
can be expressed as the extra energy consumed by both server
due to migration. Mathematically, it can be expressed as:

Eoverhead = (Psl—dmig - sl—bmig) X tmig+

(Ps27dmig - s27bmig) X tmig (€8]

0,120 4
'§ 0,103
20100 | 00% 0,095
2
®
&0 0,080 |
€
S 0,060
3 M E_ov_overloaded
ﬂ)
é 0,040 | E_ov_underutilised
3
& i 0,016 0,014
b 0,020 ! 0,009
<
P}

0,000 -

ffmpeg handbrake mencoder
Type of transcoder executing in VM 4

Fig. 4: The energy overhead of migration.

10,0 9,6
9,0 84 83
80
7,0
6,0
5,0
4,0
30
20
1,0
0,0

Average migration time, sec

ffmpeg handbrake mencoder

Type of transcoder executing in VM4

Fig. 5: The average migration time of VM 4 when the three
transcoders executed in the overloaded scenario.

where t,,;, refers to the migration time; Pgi_gmig and
Pso_amig refer to the average power consumption of Server 1
and Server 2, respectively, during migration. Psi_pmsg and
Pyo_pmig refer to the average power consumption of Server 1
and Server 2, respectively, before migration. The energy over-
head is significantly low when the two servers have sufficient
resources, regardless of which of the transcoders was used,
as can be seen in Figure B. In summary, the energy overhead
of migration plus the extra time introduced in the transcoding
time make up the cost of service consolidation in our example
scenario.

B. Overloading Scenario

The different transcoders generate different amount of
workload on the CPU and have different RAM utilization
profiles. For example, FFMPEG and MENCODER induce a rela-
tively high CPU workload (92.5%) but have comparatively low
memory footprint (279 MB). On the contrary, HANDBRAKE
generates relatively little workload on the CPU (91%) while
requiring more memory (348 MB). These differences in re-
source utilization can be exploited to carry out application-
specific adaptations when the server becomes overloaded.
However, despite these possibilities, VM-level adaptation may
still be required because the application-level adaptation may
not produce appreciable change in the system configuration.
A VM-level adaptation during an overloading situation takes
place by starting an additional server and offloading some of
the virtual machines from the overloaded server to the new
server. For our case, we migrated VM 4 to the new server and
quantified the cost of migration.

1) Migration Time: Figure B shows the migration time for
the three transcoders. The migration time increased for all the
transcoders, which is plausible due to the scarcity of resources
when compared with the underutilized situation.

2) Impact of Migration on QoS: Figure B shows the impact
of VM migration on the transcoding time, which barely in-
creased. This phenomena demonstrates an interesting aspect of
load-balancing: during migration, transcoding certainly slowed
down adding a few extra seconds on the transcoding time,
but this cost was compensated by the rich availability of
resources at the target server which facilitated the transcoding
process for the remaining time. The overall result is a near
zero impact of migration on the QoS. For example, for
the FFMPEG transcoder, the average transcoding time was
23.5 seconds when the server was overloaded and no migration

25 239 238 240 23,0 237

~N
n
)

~
=3
°

W Before migr.

=
o
°

During migr.

o
°

Average transcoding time, sec
=
&
°

=3
°

ffmpeg handbrake mencoder

Type of transcoder executing in VM 4

Fig. 6: The average transcoding time during VM migration
when Server 2 was overloaded.

70,0

a
S
°

50,0 45,6

N
8
°

W handbrake

Now
S 9
© o
N
N

Average power consumption per seconds, W
5
°

o
°

s2_before sl before s2_migr. slmigr. s2_after sl_after

Fig. 7: The average power consumption of the two servers.
Migration took place because Server 2 was overloaded.

was performed. The average migration time for this transcoder
was 8.4 seconds. Hence, if the transcoder began a new task just
at the beginning of migration, then it would execute on average
15.5 seconds on the new server to complete its task. Hence, the
delay introduced during the 8.4 seconds of migration would
be compensated during the remaining 15.5 seconds execution
with ample resources.

3) Power Consumption: The cost of load-balancing can
be clearly seen by considering the power consumption of
the two servers. If we take the case of HANDBRAKE as an
example (see Figure), when all the virtual machines executed
on Server 2, its overall power consumption was on average
63.1 W. The idle power consumption of Server 1 (when there
was no virtual machine running on it) was on average 27.1 W.
During the migration of VM 4 from Server 2 to Server 1,
the overall power consumption of both servers increased and
that of Server 1 rather significantly. After migration, the power
consumption of Server 2 reduced only slightly while the power
consumption of Server 1 increased even further, because the
transoder was executing in it and in this case the transcoder
had plenty of resources and transcoded at a higher speed. This
case demonstrates the trade-off between power consumption
and utility. Load-balancing reduced the transcoding time of
each video. However, the power consumption of both servers
increased significantly.

4) Energy Overhead: Compared with the underutilized
scenario, the energy overhead of migration becomes signifi-
cantly high for the case of the overloaded scenario (Figure).
The increment in the average power consumption in both
servers during migration as well as the longer migration time
contributed to the large amount of energy overhead. The
power consumption of both servers changed on average by
12 W during migration when VM 4 was migrated from the

23,8

N
u
o
N
®
w

~
S
°

16,9

o
°

® Underuilised scenario

o
°

Over-utilised scenario

Average transcoding time, sec

o
°

fimpeg handbrake mencoder

Type of transcoder executingin VM 4

Fig. 8: Average transcoding time when one of the servers was
either underutilized or overloaded.

23,0 23,7
20,1
' 16,9
' m mencoder
0,0

Before migr. During migr. Before migr. During migr.
(underutilised) (underutilised) (over-utilised) (over-utilised)

= = N ~
1) &) o
° o o =)

w
)

Average transcoding time, sec

Four scenarios during which a transcoding task was executed

Fig. 9: MENCODER’s average transcoding time.

overloaded server whereas it changed on average by 5.3 W
when the VM was migrated from the underutilized server.

C. The Impact of Adaptations on QoS

Figure B summarizes the average transcoding time of the
three transcoders. When VM 4 was executing in an under-
utilized server (Server 1), the average transcoding time was
16.9, 17.4, and 17.6 seconds for MENCODER, FFMPEG, and
HANDBRAKE, respectively. When the server is overloaded, the
transcoding time increased by approximately 6 seconds for
all the transcoders, as can be seen in Figure B. Figure B
summarizes the different transcoding times of MENCODER
when a server undergoes different execution states. As can be
expected, the shortest transcoding time is achieved when the
server was underutilized. VM migration in both underutilized
and overloaded states increased transcoding time. However, the
increment during migration should be understood in context. In
case of a transition from an overloaded condition to a balanced-
load condition, the extra seconds introduced during migration
can be compensated by the subsequent state which provides
the transcoder with sufficient resources to execute faster.

V. CONCLUSION AND FUTURE WORK

In this paper, we experimentally evaluated the contributions
of application-level and VM-level adaptations and how they
trade energy consumption for utility and vice versa. The
application-level adaptations were achieved by dynamically
selecting different implementations of application components
that have different resource requirements but also yield differ-
ent utilities. For video transcoding applications, which were
the subjects of our experiment, we considered binding to
different transcoder implementations. We performed VM-level

adaptation to consolidate servers (so that those underutilized
can be switched-off) and to distribute the workload of over-
loaded servers. In both cases, we quantified the cost of virtual
machine migration in terms of migration time, the impact
of migration on the quality of the service provided by the
applications (transcoding time), and energy overhead. In gen-
eral, the migration cost, with the exception of the transcoding
time, was significantly high when an overloaded server was
involved. In our present investigation, the application- and
VM-level adaptations were not coordinated. We are working
on the architecture to enable this coordination, and then we will
experimentally investigate the impact of this coordination on
the overall energy-efficiency of an entire cluster. Furthermore,
we are planning to employ formal models to detect potential
conflicts and interferences between the different adaptation
techniques and to avoid these problems.

REFERENCES

[1] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-
aware cluster management,” in ASPLOS ’14. ACM, 2014, pp. 127-144.

[2] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analy-
sis,” in SoCC ’12. ACM, 2012, pp. 7:1-7:13.

[3] H. Liu, “Host server cpu utilization in amazon ec2 cloud,” 2012.

[4] W. Dargie, “Analysis of the power consumption of a multimedia server
under different DVFS policies,” in CLOUD ’12, June 2012, pp. 779—
785.

[5] C. Mobius, W. Dargie, and A. Schill, “Power consumption estimation
models for processors, virtual machines, and servers,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 25, no. 6, pp. 1600—
1614, June 2014.

[6] A. Brihi and W. Dargie, “Dynamic voltage and frequency scaling in
multimedia servers,” in AINA ’13, March 2013, pp. 374-380.

[7] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: elastic resource
scaling for multi-tenant cloud systems,” in CLOUD ’11. ACM, 2011,
p. 5.

[8] Q. Zhu, J. Zhu, and G. Agrawal, “Power-aware consolidation of
scientific workflows in virtualized environments,” in SC ’10. IEEE
Computer Society, 2010, pp. 1-12.

[9] W. Dargie, A. Strunk, and A. Schill, “Energy-aware service execution,”
in LCN ’11. IEEE, 2011, pp. 1064-1071.

[10] S. Gotz, C. Wilke, S. Richly, G. Piischel, and U. Assmann, “Model-
driven self-optimization using integer linear programming and pseudo-
boolean optimization,” in ADAPTIVE ’13, 2013.

[11] M. Cohen, H. S. Zhu, E. E. Senem, and Y. D. Liu, “Energy types,” in
OOPSLA 12, 2012, pp. 831-850.

[12] S. Malakuti and C. Wilke, “Energy aspects: Modularizing energy-aware
applications,” in GREENS 14, 2014, pp. 23-30.

[13] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general low-
power computation,” SIGPLAN Not., vol. 46, no. 6, pp. 164-174, Jun.
2011.

[14] A. Strunk and W. Dargie, “Does live migration of virtual machines cost
energy?” in AINA ’13. 1EEE, 2013, pp. 514-521.

[15] K. Rybina, W. Dargie, A. Strunk, and A. Schill, “Investigation into the
energy cost of live migration of virtual machines,” in SustainIT ’13.
IEEE, 2013, pp. 1-8.

[16] F Xu, F. Liu, H. Jin, and A. Vasilakos, “Managing performance
overhead of virtual machines in cloud computing: A survey, state of the
art, and future directions,” Proceedings of the IEEE, vol. 102, no. 1,
pp. 11-31, Jan 2014.

[17] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in NSDI '05.
USENIX Association, 2005, pp. 273-286.

[18] F. Ma, F Liu, and Z. Liu, “Live virtual machine migration based on
improved pre-copy approach,” in ICSESS 10, July 2010, pp. 230-233.

