
Minimization of the Diffusion Delay of a

Tree-Based Wireless Sensor Network

François Delobel, Alexandre Guitton, Michel Misson

Clermont-Ferrand University, LIMOS CNRS

Complexe scientifique des Cézeaux

63177 Aubière cédex, France

Email: {delobel,guitton,misson}@sancy.univ-bpclermont.fr

Waltenegus Dargie

Chair for Computer Networks, Faculty of Computer Science

Technical University of Dresden

01062 Dresden, Germany

Email: {waltenegus.dargie}@tu-dresden.de

Abstract—In wireless sensor networks, saving energy is crucial
in order to increase the network lifetime. Energy is often saved
by synchronizing the nodes activity, and having long periods of
inactivity, or by having nodes exchange a global activity schedule.
The synchronization and the exchange of a global schedule are

two examples where an information is broadcasted from a specific
node to the whole network. In this paper, we focus on the
delay required to broadcast an information in the whole network
using a tree topology. We first show that the diffusion delay
can be significantly reduced by utilizing the parallelization of
node processing. We provide an exact algorithm in order to find
optimal solutions. Then, we propose a linear algorithm that is
able to find good solutions. We compare the exact solution to
the heuristic solution on a workstation and conclude that our
heuristic is very competitive and can be used to reduce the
diffusion delay of a broadcasted frame in a tree.

Keywords: wireless sensor network, synchronization delay,

diffusion delay, tree topology, transmission scheduling.

I. INTRODUCTION

Wireless sensor networks (WSNs) are increasingly con-

sidered for a large variety of applications, including the

monitoring of vast areas and military surveillance [1]. WSNs

are composed of small devices, called motes, which are battery

powered. A mote is a platform which has a set of sensors, lim-

ited computational capabilities, a short-range communication

module and a small-sized memory.

The main objective of a WSN is to monitor an external

phenomenon during a long time. The critical issue is often

to reduce the energy used by the network protocols while

being able to follow the evolution of the phenomenon. This is

especially challenging as motes spend about as much energy

when listening (or receiving) than when transmitting [2], [3],

[4]. Motes have additional specificities compared to traditional

computers. They often use a processor with limited computing

capabilities, which yields to large processing times. Addition-

ally, they are often based on a dual architecture (radio and

processor) communicating through a SPI interface bus, which

further increases the processing time.

In most WSNs, a global synchronization mechanism is often

used to address the energy consumption issue. It consists in

having motes share a common temporal basis. Once motes are

synchronized, they can coordinate their activities, which helps

reducing the energy used in several ways: (i) motes can sched-

ule their inactivity period so that they are all sleeping as much

as possible, (ii) motes can minimize overhearing by listening

only when a sender is transmitting, (iii) motes can refrain from

transmitting simultaneously, which reduces collisions. Global

synchronization is often achieved by broadcasting a beacon

message on a tree structure. The beacon may contain global

information about the schedules of the motes.

In this paper, we minimize the time required to broadcast

a message to all the motes of a WSN. We show that the

dual architecture of typical motes has an important impact

on the diffusion delay, and we propose algorithms to reduce

it. Our solution is generic and can be applied in order to

broadcast a global information in a network, or to minimize the

synchronization time for example. In the latter case, reducing

the synchronization time is critical as it is an overhead for

the nodes. The shorter the synchronization, the less energy is

spent.

The plan of the paper is the following. In Sect. II, we

characterize the diffusion delay on motes architectures and

we formally describe the problem of minimizing the diffusion

delay. In Sect. III, we present two exact solutions for the

problem: with an integer linear program and with a branch-

and-bound method. In Sect. IV, we propose an approximation

of the problem which runs in a linear time with respect

to the number of nodes in the network. This algorithm is

implemented on a real mote platform. We conclude our work

in Sect. V.

II. PROBLEM DESCRIPTION

Several protocols in WSNs are based on a tree topology,

as it is easy to maintain when nodes mobility is low. Several

synchronization protocols for WSN are described in [5].

The RBS protocol (Reference Broadcast Synchroniza-

tion [6]) is a tree-based, receiver-to-receiver synchronization

protocol. The authors of RBS show that the time between the

transmission of a message and the reception of the message is

subject to random delays, due to random access mechanisms

or unpredictable processing time. The synchronization in RBS

is only performed among receivers, and not with the sender

of a message. This approach eliminates the time uncertainty

at the sender compared with traditional sender-to-receiver

synchronization protocols.

The TPSN protocol (Timing-sync Protocol for Sensor Net-

works [7]) is a tree-based, sender-to-receiver synchronization

protocol. Nodes in TPSN are activated sequentially, depending

on their depth on the tree. Nodes in TPSN estimate the clock

drift using a handshake procedure with their parent. The main

advantage of TPSN over RBS is that it consumes less energy,

at the cost of a reduced accuracy.

The IEEE 802.15.4 standard [8] standard defines the lower

layers of a low power wireless personal area network. The

ZigBee standard [9] defines the upper layer of a low power

wireless personal area network, and assumes that the lower

layers operate IEEE 802.15.4. In ZigBee, motes are either

coordinators or end-devices. The motes form a tree topology

called the cluster-tree, where end-devices are leaves, coordi-

nators are internal nodes, and the root is a special coordinator

called the PAN (personal area network) coordinator. In the

following, we use the ZigBee definitions of coordinators and

end-devices.

A. Diffusion delay of a broadcasted frame

Synchronization protocols (or, more generally, diffusion

protocols) are often based on a sequence of broadcasting.

The interval between two broadcasts depends mostly on the

processing time of the node. It also depends on the architecture

of the mote. Indeed, motes are often built according to a dual

architecture: a radio module (e.g. a CC2420 component [2])

and a processor (usually operating at 4 MHz or 8 MHz),

interconnected through an SPI interface at 500 kbps. As the

commonly used physical layer of IEEE 802.15.4 is operated at

250 kbps, the time required to transmit a frame through the SPI

interface is half the time required to transmit the frame on the

medium. The processing time, the possible SPI communication

time, and the transmission time have significant impact on the

overall diffusion delay of a broadcasted frame.

In order to compute the diffusion delay of a broadcasted

frame, we assume that the frame is broadcasted in a multi-

hop manner by all the coordinators of the network. As end-

devices can only receive from their designated parent, all the

coordinators of the network have to transmit. For simplicity

reasons, we do not show in the rest of this paper the end-

devices.

We assume that nodes transmit the frame sequentially. This

is critical in order to guarantee that there is no collision

between the frames, which would dramatically increase the

delay. Allowing distant nodes to transmit simultaneously is an

issue in WSNs [10], as the location of nodes is often unknown

and propagation conditions may vary due to the mobility of

nodes or to changes in the environment.

The PAN coordinator of the network computes a sequence

containing all the coordinators of the network, and includes it

in the diffusion frame. Then, it broadcasts the frame. When

a coordinator n receives the diffusion frame from a node s,

it determines the current relative time from the location of

s in the sequence. Then, it computes its own transmission

time based on the number of nodes between s and n in the

sequence1.

Figure 1 shows an example topology of five nodes: node

A is the PAN coordinator, and the other four nodes are

coordinators. These coordinators have end-devices attached to

them, but they are not depicted on the figure.

A

B C D

E

Figure 1. An example topology for the diffusion.

Figure 2 describes how time is spent by nodes during a

diffusion of the frame, when the sequence is (A, B, C, D, E)
and the topology is the one given on Fig. 1. First, A builds

the frame in the main processing module and potentially sends

it to its radio module through the SPI interface, which is

depicted as a box with an arrow. Then, A transmits the frame.

Simultaneously (the time of flight of frames being usually

negligible in WSNs), the frame is received by B, C and D.

The radio modules of each of these coordinators send the

frame to the processing module (which is depicted as a box

with an arrow) and they all process it (which is depicted as

a box with PR). Coordinator B detects that it is its turn, and

directly transmits the frame to its radio module. During this

time, coordinators C and D are waiting. Coordinator C wakes

up after B has completed the transmission2. The process goes

on until all the coordinators have sent the frame. Note that in

the figure, we set the transmission time on the SPI interface

to half the time of the transmission on the channel. We also

assumed a small processing time PR, which might not be the

case in practice.

PR

PR

PR

PR

A
B
C
D
E

time

Figure 2. Non-optimized diffusion delay for a given sequence.

PR

PR

PR

PR

A
B
C
D
E gain

Figure 3. Optimized diffusion delay for a given sequence.

Because the time required to send a frame from the process-

ing module to the radio module is known (it only depends on

1The transmission duration is not the same for each node. At the moment,
we assume that n can determine it from the sequence itself.

2Again, we assume here that C knows the time B is going to spend
transmitting. We do not assume that C is listening to B.

the bandwidth of the SPI interface and on the length of the

frame), coordinators can send the frame in advance. In the

previous example, coordinator C does not need to wait for

B to complete the transmission before sending its frame to

the radio module. Indeed, coordinator C can wake up a short

time before B completes the transmission, and C can start

sending the frame to the radio module. Figure 3 shows an

optimized version of the diffusion, with the same sequence

and the same topology. The gain comes from the optimization

at coordinators C and D.

Let us give a numerical estimation of the different times

involved. The transmission of a medium-sized frame of 50

bytes on the wireless channel is performed at 250 kbps. Thus,

it takes about 1.6 ms. The transmission of the frame on the

SPI interface takes about 0.8 ms. The processing time of a

frame on a mote takes about 1 ms when basic operations are

performed.

B. Optimization of the diffusion delay

It can be seen on the previous example that a relatively

long time is spent between coordinators D and E. When

E receives the frame from D, it processes it, detects that it

directly follows D in the order and send the frame as soon

as possible. During this time, the medium is not used at all.

In fact, all the coordinators are waiting for E to receive and

process the frame. The delay would have been reduced if

a coordinator had been between D and E in the order. In

this way, E would have processed the frame while another

coordinator was using the medium to send its frame.

Figure 4 shows the diffusion delay on the topology of

Fig. 1, using the sequence (A, D, B, C, E). Notice that, in this

sequence, E does not directly follow D. As can be seen, the

reduction of the diffusion delay is very important compared to

the initial sequence, due to the parallelization of the activities.

While E processes the message, other coordinators are using

the channel. The proposed sequence is optimal.

PR

PR

PR

PR

A

B

C

D

E
gain

Figure 4. Optimized diffusion delay for an optimal sequence.

C. Model and definitions

In this paper, we study how to build an optimal sequence

for the diffusion of a frame, given a tree.

Let T be a tree representing a WSN, where N is a set of

|N | = n nodes. Let O(T) be a sequence on T , representing

the order of emission of the node. In the remaining part of

the paper, we call O(T) an order. As each node needs to wait

for a beacon before being able to transmit, O(T) has to be a

topological order. We use the following notations. father(n)
is the node n′ such that n′ is the father of n in (T), pred(x)

(resp. succ(d)) is the node before (resp. after) x in an order

O(T), and first(d) (resp. last(d)) is the first (resp. last) node
of depth d that appears in O(T).
In the previous subsection, we showed that the presence of a

child directly after its father in an order has a negative impact

on the delay. We call this situation a conflict. For a topological

order O(T) and a node x, we define the predicate conflict(x)
which is true if and only if pred(x) = father(x). A conflict

in an order O(T) for a node x is represented by underlining

x.

The diffusion delay depends on the number of nodes in

the network, and on the number of conflicts. As the number

of nodes in the network is fixed, we define the duration of

an order O(T) as the number of nodes x in T for which

conflict(x) is true. We use the notation d(O(T)) to denote

the number of conflicts in an order O(T).
Note that a depth-first order of T yields longest durations

than a breadth-first order of T . In the following, we consider

that a breadth-first order is a good solution.

III. EXACT SOLUTION

We propose in this section two algorithms in order to obtain

exact solutions. The first is an integer linear program. The

second is a branch and bound algorithm.

A. Integer linear program

A way to compute an optimal order O(T) for a tree T is

to define an integer linear program. Our program uses a set

of m nodes denoted by N . A set P is used to represent the

positions of the nodes in an order. Finally, father(n) denotes

the father of a node n on the tree (we assume here that the

father of the root node is the root node itself).

We also define the following relations. pos(n) represents the
position of a node n in an order. permut(n, p) is a boolean

matrix which describes to which position p a node n is

mapped in an order. δ(n1, n2) is the difference of positions

of nodes n1 and n2 in the order, plus m. The addition of

m ensures that δ(n1, n2) ≥ 0, which is required later on (see

Subsect. III-A2). conflict(n) indicates whether node n directly

follows its father in the order, which induces a conflict, or not.

Finally, the real variables λi and the binary variables xi are

used in order to model conflicts (see Subsect. III-A2). Note

that our modelization is a mixed integer linear program due

to the requirement of the variables λi to be real.

1) Modelization of the constraints: We use the following

variables of the mixed integer linear program in our modeliza-

tion. pos(n) is the position of n in the order (in {1, . . . , P}).
permut(n, p) indicates whether n is at position p or not (in

{0, 1}). δ(n1, n2) is the difference of positions of nodes n1

and n2 in the order, plus m (in {0, . . . , 2m}). conflict(n)
indicates whether n directly follows its father in the order

or not ({0, 1}). λi(n) is in IR+ and xi(n) is in {0, 1}.
Constraints 1 and 2 in Table I ensure that the order is

a permutation of nodes (through the use of permut(n, p)).
Constraint 3 attributes to each node n its position pos(n) in the
order, while Constraint 4 ensures that the order is a topological

Minimize
P

n∈N conflict(n) such that:
(1) ∀n ∈ N ,

P

p∈P permut(n, p) = 1
(2) ∀p ∈ P ,

P

n∈N permut(n, p) = 1
(3) ∀n ∈ N , pos(n) =

P

p∈P (p · permut(n, p))
(4) ∀n ∈ N , pos(n) ≥ pos(father(n))
(5) ∀n1, n2 ∈ N2, δ(n1, n2) = pos(n1) − pos(n2) + m
(6) ∀n ∈ N , conflict(n) = λ3(n)
(7) ∀n ∈ N , δ(n, father(n)) = mλ2(n)+(m+1)λ3(n)+(m+2)λ4 (n)+
2mλ5(n)
(8) ∀n ∈ N , λ1(n) ≤ x1(n)
(9) ∀n ∈ N , ∀i ∈ {2, 3, 4}, λi(n) ≤ xi−1(n) + xi(n)
(10) ∀n ∈ N , λ5(n) ≤ x4(n)
(11) ∀n ∈ N ,

P

i∈{1,2,3,4} xi(n) = 1
(12) ∀n ∈ N ,

P

i∈{1,2,3,4,5} λi(n) = 1

Table I
CONSTRAINTS OF THE MIXED INTEGER LINEAR PROGRAM.

sort of the nodes. Finally, Constraint 5 attributes the correct

value to δ(n1, n2).

2) Modelization of the conflict(n) constraint: Constraints 6

to 12 are used to model conflicts. Recall that a conflict occurs

for a node n if and only if n directly follows its father in the

order. This means that the difference between pos(father(n))
and pos(n) is equal to 1. Thus, if we denote by d(n) the

difference of positions between n and father(n) in the order,

we can define conflict(n) in the following way: conflict(n) =
1 if d(n) = 1, and 0 otherwise. Unfortunately, conflict(n) is

not a convex function of d(n).

conflict(n) can be defined as a step function of a positive

variable δ(n), with δ(n) = d(n)+m. Formally, conflict(n) can
be defined in the following way. Let a1 = 0, a2 = m, a3 =
m + 1, a4 = m + 2 and a5 = 2m, and conflict(n)(a1) = 0,
conflict(n)(a2) = 0, conflict(n)(a3) = 1, conflict(n)(a4) =
0 and conflict(n)(a5) = 0. Such a formulation can be used

to model conflict(n) using a mixed integer linear program,

as described in Ineq. 4.18 of [11] (notice that a1 has to be

greater than or equal to 0, and thus our addition of m in

δ(n)). Constraints 6 to 12 follow from this formulation.

The integer linear program described in the previous subsec-

tion is computationally expensive. Some instances of twenty

nodes are solved in several hours by a workstation using GLPK

(GNU Linear Programming Kit). Indeed, the modelization of

the conflicts and the number of integer variables make the

problem hard to solve. Thus, we decided to implement a

branch and bound algorithm to find exact solutions quickly.

B. Branch and bound algorithm

A branch and bound algorithm [12] finds an optimal solution

by exploring a tree T of all possible solutions. The quality

of each solution is computed while exploring the tree. If the

algorithm determines that all the solutions in a sub-tree have

a lower quality than an existing solution, the algorithm stops

the evaluation of the sub-tree, thus saving processing time.

Therefore, the efficiency of a branch and bound algorithm

comes from two criteria: (i) the quality of the initial solution,

and (ii) the relationship between the quality of a solution

s ∈ T and the quality of the solutions in the sub-tree of s.

The tree T explored by the branch and bound algorithm is

an n-ary tree. T is built in the following way. Each node of

the tree corresponds to an order. The root corresponds to the

empty order. If a node of T corresponds to an order o of k

nodes, it has n− k children in T . The i-th child corresponds

to the order o ·ni, where ni is the i-th node of N not present

in on. Tree T has n! leaves, which are all the possible orders

of the n nodes. Not all the possible orders are valid (as some

of them are not topological), but the optimal order is one of

the leaf of T .

The topological rule ensures that orders that are not topo-

logical are not examined, as they cannot correspond to a valid

solution. The branching rule assumes that the best current

solution (possibly not optimal) is known and cuts subtrees of

T whose duration is larger than the current best. The key here

is that the duration of an order on is always smaller than or

equal to the duration of any topological order on · ni.

The choice of the initial reference solution is crucial. We

used our heuristic described in Sect. IV as a good initial

solution.

Breadth-First algorithm (BF) is compared to the optimal so-

lution (computed with Branch and Bound) using two types of

generated trees: random trees and interconnection of random

hot-spots.

1) Random trees: Random trees are designed to model

interconnections between motes in a dense WSN. Nodes are

added to the tree one by one. They are attached to any existing

node of the tree, except to those having already more than Rm

children. Note that this limitation is consistent with the cluster-

tree topology formation of ZigBee [9]. Motes locations are

not generated by this algorithm, because only tree structures

have an impact on the order duration. Note that with this tree

generation algorithm, trees tend to become complete rather

than grow deeper.

In our simulations, we used Rm = 5. We varied the number

of nodes from 50 to 2000. For each number of nodes, we

generated 1000 trees. Generating all the trees and finding the

optimal solution using the branch and bound algorithm takes

about half an hour on an i7 930 workstation.

The percentage of trees where the breadth-first order was not

optimal, varies between 15% and 21.1% (on average 17.9%

with a standard deviation of 1.35). It does not depend on the

number of nodes (from node numbers varying from 50 to

2000). The average duration of breadth-first orders, when they

are not optimal, is on average about 2.17 (while the optimal

duration is on average 1) with a standard deviation of 0.03.

These results do not change as the number of nodes vary.

Consequently, breadth-first orders are good approximations of

the optimal order when random trees are generated.

2) Interconnection of random hot-spots: When the network

is dense, it is possible to find optimal solutions having a very

low duration. We consider here a network constituted of two

hot-spots, interconnected by a chain of nodes. The root of the

tree is located in one of the hot-spot3. The generator first places

x motes with sensors within the hot-spots, then adds as many

motes as required in order to build a tree in each hot-spot,

and interconnects the two hot-spots by deploying a chain of

motes. The generated tree includes only the non sensor motes.

The topologies were generated using the following parame-

ters. The communication range of motes is about 15 m. Each

hot-spot has a diameter of 40+ x
2
m, and consists of x sensors.

The distance between the two hot-spots is about 8 ∗ x m. The

coordinator is added to the center of one hot-spot. We varied

x from 5 to 20, and we generated 100 trees for each x. Note

that the number of nodes n depends on x. Note that with the

trees generated, the breadth-first order duration is usually far

away from the optimal duration, which causes the branch and

bound algorithm to take hours to solve instances of 60 nodes.

Figure 5 shows the average duration of Breadth-First and

optimal orders, as x varies. It can be that the duration of the

breadth-first order grows proportional to x, which is explained

by the fact that the hot-spots are separated by a distance

proportional to x. Variations in the breadth-first duration are

due to different tree topologies. The optimal order yields

durations of 1 on average, which means that the nodes of

the first hot-spot are used by the optimal order to break the

chain of nodes. If the two hot-spots were separated by a

larger distance (for instance, if the distance between hot-spots

exceeds 15x), the optimal duration could not be equal to 1.

 1

 2

 3

 4

 5

 6

 7

 8

 20 25 30 35 40 45 50 55 60

A
v
e
ra

g
e
 d

u
ra

ti
o
n

Number of nodes

Breadth-First average
Optimal (branch and Bound)

Line Fit of BF

Figure 5. Average duration of breadth-first and optimal orders, for intercon-
nections of hot-spots.

IV. HEURISTIC METHOD

In this section, we present an algorithm that approximates

the optimal order in linear time. The general idea for this

algorithm is to improve a breadth-first order by permuting and

moving nodes in the order without changing the tree topology.

A. Permuted order

Let us consider a breadth-first order. Such an order can

cause at most one conflict per depth d. If there is a conflict at

depth d, we apply one of the three permutation rules. Permu-

tation P1 is applied iff there are at least three nodes on depth

d. Permutation P1 consists in swapping succ(first(d)) and

3Such a topology is a worst-case scenario for the duration of the order.
Indeed, when a tree possesses a single, sufficiently long chain of nodes, all
topological orders contain the nodes of the chain in sequence, and the optimal
duration increases significantly.

last(d) in the current order. Figure 6 shows Permutation P1

applied on an example. Permutation P2 is applied iff (i) there

are exactly two nodes on depth d and (ii) first(d) and last(d)
have the same father. Permutation P2 consists in swapping

first(d) and last(d) in the current order. Permutation P3 is

applied iff (i) there are exactly two nodes on depth d and (i)

first(d) and last(d) have a different father. Permutation P3

consists in swapping first(i) and last(i) for each depth i such

that (i) j < i ≤ p, (ii) there are exactly two nodes on depth i

that have a different father and (iii) at depth j, there is either

one node, two nodes with the same father or three or more

nodes. If there are two nodes at depth j, they are swapped.

If there are three or more nodes at depth j, a node nx
j that is

neither the father of first(j+1) nor of last(j+1) is swapped
with node last(j). Figure 7 shows Permutation P3 applied on

an example. A permuted order P (T) can be computed by first

considering permutations P1 and P2 from depth 1 to h, and

then considering permutations P3 from depths 1 to h.

A A

B BCC D D

E E

⇒

ABCDE ⇒ ADCBE

Figure 6. Permutation P1 reduces by one the duration of the order.

AA

CC BB DD

EE FF

GG HH

II

⇒

ABCDEFGHI ⇒ ADCBFEHGI

Figure 7. Permutation P3 reduces by one the duration of the order.

B. Displaced order

The displaced order enhances the permuted order by remov-

ing the constraint of having nodes sorted by depths. Let O(T)
be a topological order. If last(d) is the father of first(d+1)
in O(T), and if depth d contains only one node last(d), the
displaced order moves an available node for last(d) between

last(d) and first(d+1). A node nx is said to be available for

a node last(d) if it satisfies the following conditions: (i) nx is

directly preceded by node na and directly followed by node

nb, (ii) nx has no child in the tree T (so that the order remains

topological), (iii) nx is before last(d) in the order O(T), and
(iv) either na is the father of nx and of nb, or na is the father

of neither nx nor of nb. Figure 8 shows an example of a

displaced order, where the available node is B. A displaced

order D(T) is computed by considering displacements from

depths 1 to h. Our heuristic consists in building D(T).

AA

B

B

C C

DD

⇒

E E

A0B1
AC1

AD2
CE3

D ⇒ A0C1
AD2

CB1
AE3

D

Figure 8. Displacement rule D reduces by one the duration of the order.

The computation of D(T) is realistic for real motes, as

it only requires a time which is a linear function of n, as

follows. The breadth-first order B(T) can be computed in

O(n + m), where n is the number of nodes of T and m

is the number of edges of T . As T is a tree, m = n−1. Thus,
B(T) can be computed in O(n). The (potential) application

of permutations P1 and P2 at each depth requires O(h).
The (potential) application of permutations P3 at each depth

also requires O(h): although P3 considers swapping nodes

at previous depths, it is not possible for the same node to

be considered twice. The overall complexity for P (T) is

O(n + h) = O(n).

The set D of all the available nodes, with respect to the last

node of P (T), can be computed in O(n). When the algorithm

searches for an available node for last(d), only the first node

of D, denoted nx, needs to be considered. If nx is not available

for last(d), this means that no further nodes in D are available

for last(d). If nx is available, D has to be updated. As nx has

no children in T (due to the second constraint of the available

nodes), the changes in D are limited to na and nb, which

are the neighbor nodes of nx. In other words, once set D is

computed (in linear time), it only decreases (in constant time).

Thus, computing D(T) requires O(n).

C. Simulation results

In this section, we study the performance of our heuristic

with respect to breadth-first and and optimal approaches.

With the same random trees as previously, less than 0.8%

of heuristic solutions are not optimal (on average 0.25% with

standard deviation 0.16%). Note that heuristic solutions are at

least as good as breadth-first solutions.

Figure 9 depicts the average duration of breadth-first, heuris-

tic and optimal orders on small interconnected hot-spots. The

figure shows that the heuristic improves greatly the duration

of the breadth-first order, keeping the duration constant and

close to the duration of the optimal solution. Figure 10 depicts

the average duration of breadth-first and heuristic orders on

large interconnected hot-spots, where the number of sensors

varies from 0 to 2000, and 1000 instances are generated per

size. Note that we were not able to run the branch and bound

algorithm on such topologies. The duration of the heuristic

order remains nearly constant (most of the conflicts of the

breadth-first orders can be repaired), whereas the duration of

the breadth-first order grows proportionally with the number

of nodes.

 1

 2

 3

 4

 5

 6

 7

 8

 20 25 30 35 40 45 50 55 60

A
v
e
ra

g
e
 d

u
ra

ti
o
n

Number of nodes

Breadth-First average
Heuristic average

Optimal (branch and Bound)
Line Fit of BF

Figure 9. Average duration of
breadth-first, heuristic and optimal
orders, on small interconnected hot-
spot trees.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000 6000 7000 8000

A
v
e
ra

g
e
 d

u
ra

ti
o
n

Number of nodes

Breadth-First average
Heuristic

Figure 10. Average duration of
breadth-first and heuristic orders, on
large interconnected hot-spot trees.

V. CONCLUSION

Several protocols developed for WSNs require the diffusion

of an information in the whole network in a guaranteed

manner. In this paper, we study the delay required to propagate

the information to all nodes. We show that the order in

which nodes transmit the data has a critical impact on the

overall delay. Consequently, we propose two exact algorithms

and a heuristic one in order to reduce the diffusion delay.

Simulations are performed on randomly generated trees and

on randomly generated interconnection of hot-spots. We show

that our heuristic is applicable in real scenarios and that it

leads to near-optimal diffusion delays.

In a future work, we plan to adapt our study to graphs. We

aim at finding the optimal diffusion order when the complete

communication graph is given, rather than when a tree is given.

We also plan to implement our heuristic on TelosB motes in

order to check the computation cost and memory requirements

for relatively large networks.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer networks, vol. 38, no. 4, 2001.

[2] “CC2420 - 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver,”
Chipcon, preliminary datasheet, 2004.

[3] J. Elson and K. Römer, “Wireless sensor networks: A new regime for
time synchronization,” in Hot Topics in Networks, 2002.

[4] J. Rahmé, N. Fourty, K. Al Agha, and A. Van Den Bossche, “A recursive
battery model for nodes lifetime estimation in wireless sensor networks,”
in IEEE Wireless Communications and Networking Conference, 2010.

[5] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchro-
nization in wireless sensor networks: A survey,” Ad-Hoc Networks,
vol. 3, no. 3, pp. 281–323, 2005.

[6] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” in OSDI, December 2002.

[7] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in ACM SenSys, 2003, pp. 138–149.

[8] IEEE 802.15, “Part 15.4: Wireless medium access control (MAC) and
physical layer (PHY) specifications for low-rate wireless personal area
networks (WPANs),” ANSI/IEEE, Standard 802.15.4 R2006, 2006.

[9] ZigBee, “ZigBee Specification,” ZigBee Standards Organization, Stan-
dard ZigBee 053474r17, January 2008.

[10] X. Wang, “Spatial channel reuse in wireless sensor networks,” Wireless

Networks, vol. 14, no. 2, pp. 133–146, 2008.
[11] A. Billionnet, Optimisation discrète. Dunod, 2007.
[12] A. H. Land and A. G. D. Doig, “An automatic method of solving discrete

programming problems,” Econometrica, vol. 28, no. 3, pp. 497–520,
1960.

