
Energy-Aware Service Execution
Waltenegus Dargie, Anja Strunk, and Alexander Schill

Chair for Computer Networks
Faculty of Computer Science

Technical University of Dresden
01062 Dresden, Germany

Email: {waltenegus.dargie, anja.strunk, alexander.schill}@tu-dresden.de

Abstract—The energy consumption of ICT infrastructures has
increased considerably in the recent years. This has resulted in
extensive research on dynamic power management strategies as
well as data centre design and placement. The main problem
with most of the proposed or existing approaches is that they
do not fully take the distributed nature of and strong logical
dependencies between executed services into account. However,
without a comprehensive knowledge of the wider relationships
between services, local power management strategies may be
ineffectual or can even result in high aggregate energy cost.
Understanding this relationship is useful for fine-grained energy-
aware computing. For example, services that run on underutilised
servers can be stopped or seamlessly migrated to other servers,
so that the underutilised servers can be turned off. Alternatively,
a re-binding process can be used if the cost of service migration
is high. Such advantages can be fully exploited if the depen-
dency between services is properly understood and meaningfully
modelled. This paper introduces a conceptual architecture for
an energy-aware service execution platform and compares three
optimisation mechanisms to support dynamic service migration
and rebinding.

Index Terms—Context-awareness, dynamic power manage-
ment, energy-efficient servers, power consumption estimation,
service execution, service oriented architecture

I. INTRODUCTION

The energy consumption of servers and data centres is
becoming a significant research issue. The issue is particularly
interesting, since high energy consumption does not necessar-
ily correspond with high performance. Figure 1 displays an
actual measurement of the energy consumption and workload
distribution of a high performance computer (SGI Altix 4700
featuring 1024 dual-core Intel Itanium processors and 6.5
TB main memory) at the Centre for Information Services
and High Performance Computing (ZIH), Technical University
of Dresden. As can be seen in the figure, even though the
workload significantly varied throughout the day, the energy
consumption of the server remained fairly constant.

A wide range of power management strategies have been
proposed to optimise the energy consumption of computing
systems. At the macro level, some of these strategies aim
at optimal placement of servers and services as well as
data [24], chiefly to reduce the energy cost of cooling and
communication. At the micro level, energy-aware scheduling
[20], resource virtualisation [14], and service consolidation
[23] have been proposed, chiefly to reduce the energy cost of

nt
Pe
rc
en

Actual energy consumption
Actual workload

Time

Fig. 1. A disproportional energy consumption of a high performance server
at the Technical university of Dresden. The measurement was taken on June
20, 2008.

runtime service execution. Complementary to these, dynamic
voltage and frequency scaling [16] as well as dynamic and
selective switching on/off of hardware resources have been
proposed to reduce the idle power consumption of servers.
The main problem with most of the proposed or existing
approaches is that they do not fully take the distributed nature
of and strong logical dependencies between executed services
into account. Without a comprehensive knowledge of the wider
relationships between services, power management strategies
can be either ineffectual or even result in high aggregate energy
cost [25].

Traditionally, applications have been developed from a
scratch; all the services that make up an application belong to it
at all times. This practice is now being replaced by the service-
oriented architecture in which services are independently de-
veloped, deployed, and managed. Applications are described
as abstract business processes that can be executed by invoking
a number of available services at runtime. An essential aspect
of this approach is that service providers and their customers
negotiate for utility based Service Level Agreements (SLAs)
to determine the costs and penalties of service execution based
on the achieved performance levels.

From a service-oriented architecture point of view, the
placement of computational resources can be described using



Fig. 2. Relationship between applications, services, and hardware resources.
Top: application layer. Middle: service layer. Bottom: computing resources
and the software that manges them

Figure 2. At the bottom, there are hardware resources and
operating systems that manage them. In the middle, there are
distributed software services which provide certain functional-
ities to the top layer process descriptions. At the top, there are
applications which are described as business processes (work-
flow). These applications bind to the middle layer services
at runtime. Logically, a service execution platform resides
in the middle layer to facilitate service discovery, selection
and binding; and to ensure that contractual agreements are
respected by the applications as well as the service providers.

An application or a composition thereof consists of several
subtasks, each subtask directly binding to a software service.
During a runtime execution, services are invoked according
to their execution order; and data between the services are
exchanged according to the data flow structure of the com-
position. In Figure 2, the service composition starts with the
invocation of the service SA1 as an implementation of the
subtask TA, followed by the concurrent executions of the
services SB1 and SC3 as the implementations of subtasks TB

and TC , respectively. The composition finishes with the exe-
cution of SD1 to carry out the subtask TD. The infrastructure
provider guarantees each service a formally established quality
of service as defined by the SLAs. Hence, the infrastructure
provider distributes the hosted services among the physical
machines to ensure that the SLAs are satisfied even at the
system’s peak load. In most cases, the physical machines that
host the services are utilised between 10 and 60 percent of
their peak capacity and, hence, a static distribution of services
is inefficient [1].

Understanding the distributed nature of service execution
is useful to avoid conditions that lead to underutilising or

overloading servers. The separation of concerns between the
application development (composition) and the service de-
ployment as well as the hardware infrastructure usage and
the infrastructure provision and management enables adaptive
and energy aware decisions to be made at various levels
of abstractions. At the application level, the order of ser-
vice execution can be rearranged to defer service execution
for a latter time to prevent servers from being temporarily
overloaded. Alternatively, services can be executed ahead of
their schedule in case a server is idle or underutilised. At
the service level, service rebinding and service migration can
be carried out to consolidate services and to run an optimal
number of servers in a cluster. Unlike previous approaches
focusing on live migration of virtual machines (which are
potentially responsible for managing several services) [7],
service migration is fine grained, efficient, and quick. More-
over, as complementary to service migration, dynamic service
rebinding enables to bind to alternative services in case the
cost of migration (particularly, in terms of execution delay)
violates some existing SLAs.

In this paper, a conceptual architecture for supporting
energy-aware service execution is presented. The architecture
enables energy-aware adaptations at various levels of abstrac-
tion. Moreover, the paper compares three types of optimisation
strategies – taboo search, genetic algorithm, and simulation
annealing – that enable fast and efficient service rebinding.

The rest of this paper is organised as follows: Section II
summarises related work. Section III discusses an energy-
aware service execution and presents a conceptual architec-
ture to support dynamic service migration and rebinding. In
Section IV, three types of optimisation strategies to enable
dynamic rebinding are discussed and evaluated. Finally, in
Section V, a discussion is given to summarise the contributions
and observation of this work and to layout a future work.

II. RELATED WORK

Fan et al. [12] investigate the energy consumption of
Google’s web service infrastructure and find out that the idle
state power consumption of most of the servers is above 50%
of the peak power consumption. The same study suggests
that the amount can be reduced to 10% of the peak power
consumption by implementing power management strategies.
The study, however, does not indicate how the reduction can
be achieved. A comprehensive analysis of the net productivity
of enterprise IT operating as a whole system (servers, storage,
tape, networking, power distribution, and cooling systems) is
given in [3]. Similarly, Hamilton [15] introduces the concept
of work done per dollar and work done per joule to measure
the efficiency of servers. The relevance of the study is in
its practical analysis of the full-load performance of existing
servers. Jourjon et al. [18] analytically model the energy
consumption of a peer-to-peer content distribution network.
The model extends the one initially proposed by Irani et al.
[17], which expresses the energy consumption of wireless
sensor networks. Both models attempt to quantify the cost of
data processing and communication as well as the idle state



of servers. The model of Jourjon et al. is used by an off-
line scheduler to estimate the number of distributed servers
required to efficiently support the exchange of multimedia
content of known volume. While the communication aspect
of the analytic model is not relevant to the us, the general
approach to quantify the energy cost of various concerns is
interesting.

Clark et al. [7] introduce the idea of live Virtual Machine
migration as a mechanism to consolidate computing resources,
reduce management complexity and speed up the response
to business dynamics. They employ a pre-copy mechanism
in which pages of memory are iteratively copied from the
source machine to the destination host. A page level protection
hardware is used to ensure a consistent transfer of data.
Likewise, Bradford et al. examine the delay associated with
live migration of a VM, both within a local area network
and a wide area network environments. Whereas the migration
within a local area network environment takes a few seconds
(three seconds), migration across a wide area network takes
68 seconds. Liu et al. [19] propose a conceptual architecture
to support live VM migration, which consists of a managed
environment, a migration manager, and a monitoring service.
The managed environment consists of a host of computing
resources (virtual machines, physical machines, remote com-
mands on VMs and applications) whose operation can be
adaptively controlled. The migration manager is responsible
for triggering live migration and makes decisions pertaining
to the placement of virtual machines on physical servers. The
monitoring service monitors resource utilization, the workload
created by applications, and the power consumption of phys-
ical servers. It is the main source of knowledge regarding
the workload and power distribution in the cloud. A heuristic
algorithm is used to estimate workload distribution and trigger
migration. While migration is a useful strategy, it is not the
aim of this paper to strive for VM migration. There are two
reasons for this: (1) In a service-oriented environment, a single
VM may be used by a large number of services; in which case,
VM migration cannot take place without first migrating or de-
installing all the services it hosts. (2) It may not be necessary
to migrate inactive services that are managed by a VM. In
contrast, we focus on migration and re-binding at the service
level to achieve a more flexible and efficient way of energy-
aware computing.

Binder and Suri [2] classify hardware resources in the Cloud
as dispatchers, file servers, and compute servers. The first
two run permanently while a dynamic power management
technique is applied on the compute servers based on the
present and anticipated workload distribution in the cloud. A
probabilistic algorithm is employed on the dispatcher servers
to determine (1) to which of the compute servers requests
should be dispatched for processing; and (2) which of the
compute servers should be turned off. Each compute server
hosts a node manager for monitoring idle time and average
service response time (metrics relevant for the probabilistic
algorithm to estimate workload and transition periods). The
service dispatch algorithm is in many respects similar to most

process scheduling and load balancing algorithms in operating
systems as well as job scheduling in grid computing. The
main difference is that whereas the latter algorithms aim
at performance (CPU utilisation, throughput, response time,
turnaround time) and fairness, the former aims at consolidating
services and keeping the number of running servers as small
as possible without infringing service level agreements. The
proposed algorithm and the classification of resources as a key
aspect of the power management technique are most suitable
for client-server architectures. Moreover, service requests (and
thereby, service arrival rates) are considered to be independent
from each other. Apparently, in a service oriented computing
environment, services are logically dependent on other ser-
vices. Consequently, local energy-aware adaptations certainly
have impact on the energy consumption of servers elsewhere.
The magnitude of this impact should be quantified to justify
local adaptations.

Chen et al. [4] propose a statistic-based energy-efficient
workload generation for MapReduce computation. The work
exploits knowledge of inter-job arrival rates as well as the
ratio between input and shuffle, shuffle and output and output
and input data to make decisions concerning cluster size and
configuration parameters such as the number and distribution
of workers in a cluster. Similar work by the same authors [5]
provides an extensive analysis of the energy consumption of
various concerns (read/write operations, distributed file system
replication, sorting, shuffle operations that involve memory,
network cards and disks, etc.) of a MapReduce job. The main
contribution of this latter work is its quantification of the
energy consumption of servers in terms of the amount of useful
data they processed (for example, the amount of sorted records
per joule). Based on the analysis, the authors propose a simple
energy model that can be employed to estimate an optimal
workload distribution. The model, though applied in a narrow
context, can be extended to analyse the energy consumption
of logically dependent distributed services.

III. ARCHITECTURE

Figure 3 displays a partial view of the conceptual archi-
tecture of the energy-aware service execution platform. The
main task of the platform is to search and bind to the services
which accomplish the tasks that are described in the business
process description (workflow) at the application level. The
services are distributed and selectively replicated in a cluster of
servers. Additionally, the service execution platform monitors
the violation of SLA’s during service execution and ranks the
reliability of services for future binding.

To achieve energy-awareness, the service execution platform
gathers context information from all levels of abstractions and
carries out adaptive decisions in return. At the application
layer, it rearranges the execution order of services and differs
service execution for a latter time in case the current execution
order overloads or underutilise resources. At the service layer,
it starts and stops services and moves them from server to
server. At the infrastructure level, it selectively switches on or
off hardware resources.



request
arrival

Application

rate/ SLA
violation service

relocation

Monitoring

Services service
status

d

rebinding/
migration

Computing
infrastructure

Adaptation

resource
selective
switching

status
switching

Fig. 3. A partial view of the energy-aware service execution

The existence of logical dependencies between the dis-
tributed services that make up an application is the basis
for energy-aware service execution. Knowledge of these de-
pendencies is formally obtained from a workflow and the
Service Level Agreements between the application and the
actual services to which it binds. From the workflow, order
of service execution, input-output dependencies and temporal
dependencies can be obtained. The Service Level Agreements
set constraints on, among other things, service response time
and data quality.

A. Context

Unlike previous approaches, we believe that the use of
context [9], [10] plays an important role in energy-aware
service execution. At the infrastructure level, knowledge of the
power consumption of the hardware resources, the efficiency
and capacity of the power supply unit, the different operational
modes (in terms of voltage and frequency) of the hardware
subsystems, etc. is useful. At the service level, the status of
the services, the size of the services, the different operations
they support (read, write, update (a combination of read and
write operations), search, filter, communicate, etc.) as well as
the average energy they consume when these operations are
carried out, are useful. At the application level, user requests
arrival rates, average read operations per user, average write
operations per user, ratio of read and write operations in update
requests, etc., are useful.

For example, the voltage levels of the power supply units of
most light weight servers are directly affected by the amount
of current drawn from the supply units. Whereas some power
consumption estimation models assume an invariable (con-
stant) voltage (3.3V, 5V, 12V) during the calculation of power
consumption, this knowledge should be taken into account
both when estimating the power consumption of a future
workload and when modelling underutilising and overloading
conditions. Figure 4 shows how the +5 V supply line that
connects the power supply unit with the hard disk, which was
connected to an AMD Dual Core Athlon 64 X2 server, varies
during a write operation. As can be seen, the supply voltage
(which should be constant) fluctuates throughout, but as the

hard disk draws a significant amount of current, the fluctuation
got worse, thereby, significantly reducing the efficiency of the
power supply (in that the current that can be drawn from the
power supply reduced). This implies that, an extended heavy
write-workload can potentially cause the hard disk to consume
a power which is not proportional to the work done (in terms
of the number of bits written per watt).

Likewise, a stochastic knowledge of the power consumption
of individual hardware resources during the transition between
active and off states is useful to make realistic estimation of
the cost of power transitions. Again, in the literature, power
transition costs are modelled as static quantities. For example,
Chiasserini and Rao [6] use a static approach to estimate the
minimum shut-down state of a computer to justify selective
switching:

τth = max

(
0,

(Pon − Poff,on) toff,on

Poff − Pon

)
(1)

where Pon is the mean power consumption in the idle (under-
utilised) state; Poff,on is the transition cost (from the off to
an active state) in terms of power consumption; and Poff is
the power cost of the server in the off state. The time period
τth + toff,on is defined as the minimum break-even time, i.e.,
the minimum length of the device’s idle period to save energy.
The equation neglects the delay and power cost of transition
from the idle to the off state. Even so, the transition cost from
the off to the active state, namely, Poff,on, is considered to be
a deterministic quantity. A similar model can also be found in
[22].

While this can be useful for simple servers, our own
observation suggests that the power cost of state transition
should better be modelled as stochastic quantity. Moreover,
this cost significantly differs from subsystem to subsystems as
well. Figure 5 displays the cumulative distribution functions
of the power consumption of the motherboard taken from the
12V supply line and the CPU taken from the 12V supply line.

Therefore rich context information pertaining to computing
resources enables fine-grained decisions to be made at different
abstraction layers.

B. Consolidation

To make a server operate in its optimal region or to switch
it off altogether, services should be consolidated by migrating
them or by rebinding to alternative services. Service rebinding
has the same goal as service migration, but it is carried out
when the cost of service migration is high. A rebinding process
releases a service that runs on an underutilised or overloaded
server and rebinds to a similar service that runs on an optimally
configured server.

Both service migration and rebinding require the live trans-
fer of state information from one server to another. Thus,
the main tasks in consolidating services are to (1) identify
the services whose migration or deactivation produces the
optimal energy utilisation; (2) estimate the cost of migration
and/or rebinding; and (3) identify target servers on which the
services should be migrated or alternative services should be



Fig. 4. The fluctuation in the supply voltage of a 5V line of a hard disk during a write operation. Top: Fluctuation in supply voltage. Bottom: Variation in
drawn current (power). The Yokogawa 210 Power Analyser was used during the measurement.

started. These tasks become complex as the number of services
running on the individual servers become large.

Figure 6 displays the steps required to carry out energy-
aware adaptation. An event from a hardware monitor is emitted
when a server is underutilised or overloaded. When the adap-
tation component receives this event, it identifies among the
services that are actively running on the server the ones which
can be migrated or replaced by equivalent services elsewhere.
Then, it estimates the cost of adaptation and compares it with
the energy gain that can be achieved through adaptation.

Once the services with minimal adaptation cost and optimal
energy gain are chosen, the adaptation component ensures
that no SLA will be violated or, if this cannot be avoided, it
recomputes an adaptation cost for a different set of services.
Finally, it computes the optimal target servers to which the
services migrate or on which a service rebinding takes place.
The last problem, i.e., finding the optimal target servers, can
be modelled as a multi-dimensional, multi-objective, multi-
choice knapsack problem (MMMKP) [26]. Given n target
servers that have different accommodation capacities1 (see
Figure 7) and m different services each of which generates a
different workload, the aim is to compute the optimal service

1Since each server in a cluster should operate between two energy thresh-
olds (within the optimal operation region), the energy-aware service execution
platform migrates services to or rebinds services on a target server as long as
its energy consumption remains within the operating region.

distribution without violating any of the existing Service Level
Agreements.

IV. THE COST OF ADAPTATION

One of the side-effects of adaptation is the delay it causes
in the execution of services. Often a delay in the execution
of a single service results in a chain of concomitant delays.
The delay cost is higher for a service rebinding than a service
migration. This is because, in addition to the cost of identifying
the optimal target servers on which the newly selected services
should be started, a service rebinding requires the selection of
an optimal alternative service that (1) minimise the energy
consumption of a service execution and (2) also satisfy all the
service level objective constraints defined by the SLAs. For
instance, in Figure 2, the subtasks of the service composition
at the application layer can be carried out by different services
at the service level. The subtask TA can be performed by
SA1 that runs on Machine 1. It can also be performed by
the alternative services SA2 or SA3 that run on Machine 2
and Machine 3, respectively. Likewise, the subtask TB can be
performed by SB1 or SB2, each of which runs on different
machines, and so on. Hence, the complexity of choosing the
optimal services increases with the size of the workflow as
well as the the number of alternative services for each subtask.

We consider the delay cost of a rebinding process to be
the worst case of our adaptation strategy. As a result, we



6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Transition Power 12V Motherboard: Start Up

x

Fn
(x

)

●● ●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●
●●●●
●●●
●●●●
●●●
●●●●
●●●
●●●●●
●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●
●●●●●●
●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●● ● ●●●● ● ● ● ●

5.5 6.0 6.5 7.0 7.5 8.0 8.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CPU Transition power: Start up

x

Fn
(x

)

●● ●●●●●●●●●●● ●● ●●●●●● ●● ● ●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●
●●●●●
●●●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●
●●●
●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●
●●●
●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●
●●●●
●●●●●●
●●●●●●●● ●●●●●●●●●

●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●
●● ● ●●●●●

Fig. 5. The cumulative power consumption of the 12 V supply line supplying
power to the mother board (top) and the CPU (Bottom). In both cases, the
x-axis refers to the power consumption in Watt. The transition cost was
measured on the same server running Ubuntu Server version 10.4 and the
server was running idle before it was shut down.

implemented a rebinding component within the adaptation
component of Figure 3 and tested the end-to-end delay of
a service execution (for the entire workflow) during service
binding. The rebinding component consists of three subcom-
ponents, namely, the generator, the selector, and the core
(see Figure 8). The generator is provided with a workflow
description formally defined with BPEL [11] of a workflow
and generates Java objects which are useful for the selector
to carry out service selection. The selector is provided with
the description of alternative services and a workflow and
computes the optimal services for binding. This entails the
evaluation of

∏m
i=1 ni task-to-service binding, where ni is

the number of equivalent services for each subtask i and
m is the total number of subtasks. For instance, there are
altogether 24 implementations for the composition displayed

Stage 1: Capture conditions that lead to underutilising or overloading a server
Estimate the duration of the foreseen condition

Stage 2: Determine the optimal adaptation mechanism
At this stage it is sufficient to determine whether a long term
(rebinding/migration combined with selective switching on/off of a hardware
resource) or a short term (service relocation) adaptation is necessaryresource) or a short term (service relocation) adaptation is necessary

Stage 3: Estimate the cost of adaptation
A genetic algorithm is used to identify the services to be migrated or for which
alternative services should be started on target servers Moreover the cost ofalternative services should be started on target servers. Moreover, the cost of
migrating/rebinding these services is computed

Stage 4: Ensure that no SLA is violated by adapting these services.
If violation cannot be avoided go back to stage 3 and identify alternativeIf violation cannot be avoided, go back to stage 3 and identify alternative
services to adapt.

Stage 5: Identify an optimal set of target services and migrate services or
configure and run alternative servicesconfigure and run alternative services
This problem is modelled as a multi objective knapsack problem. Initial result
favours taboo search as the fastest algorithm for the task.

Fig. 6. A brief summary of the steps taken to undertake an adaptation

. . .

Machine 1 Machine 2 Machine n

Fig. 7. Identifying target servers modelled as the knapsack problem. The n
target servers have different workloads and can accommodate different types
of services.

in Figure 2. The core provides the interface between the
adaptation components and the client supplying the workflow,
the description of the equivalent services for each subtask, and
the QoS constraints. The core also synchronises the rebinding
process by calling the generator to read the specifications; and
the selector to output the optimal services for a composition.

We experimented with three comparable heuristics, namely,
the genetic algorithm [21], the taboo search [8], and the

Generator
R

BPEL Process Services or
e R

l

BPEL Process Services co

R

Selector

Fig. 8. The rebinding components



Fig. 9. Rebinding time in milliseconds using genetic algorithm, simulated
annealing, and taboo search as a function of the number of alternative services
for each subtask in a composition.

simulated annealing [13] as selection strategies. The efficiency
of the optimisation heuristics was evaluated in terms of their
performance and correctness. The performance test focuses on
the time it takes for the selector to compute the optimal set
of services by satisfying a prescribed set of non-functional
requirements of a workflow (availability, reliability, response
time, and price). To evaluate the correctness of the heuris-
tics, we first computed the optimal services using dynamic
programming, which yields the true optimal result, but its
computation time was unacceptably high. Then we compared
the output of the heuristics with the results obtained from the
dynamic programming.

In the experiment, we measured a computation’s time in
which 20 subtasks were defined, each subtask having up to 7
alternative services. This results in [20, 207] implementations.
Figure 9 displays the computation time as a function of
the number of alternative services for each subtask. The
computation time of all algorithms increases with the number
of services. The algorithm with the lowest selection time is
the taboo search, followed by the simulated annealing. The
maximum execution time of each algorithm was less than 200
ms.

To evaluate the correctness of the heuristics, we once again
varied the alternative services of each subtask from 1 to
7 implementations. Each service had a randomly generated
response time. Each test case was performed 50 times. The
correctness is expressed by calculating the mean square er-
ror between the response time obtained from the dynamic
programming and the minimum response time obtained by
employing the heuristics. The mean square error as a function
of the number of services per task is shown in Figure 10. The
simulated annealing is the most correct algorithm in finding
the minimal response time, with a mean square error that was
less than 0.05.

V. CONCLUSION

This paper proposes energy-aware service execution which
carries out adaptation at various abstraction levels. The aim is

Fig. 10. The mean square error of genetic algorithm, simulated annealing and
taboo search for finding the optimal services that maximize a composition’s
end-to-end QoS.

to avoid situations that lead to underutilising or overloading
physical machines. At the application level, a service execution
is differed as a short term strategy. At the service level,
services are either migrated to alternative physical servers
or applications bind to alternative services so that services
that underutilise or overload a server can be stopped. Un-
like previous approaches which focus on the migration of
virtual machines, service migration is fine-grained, highly
flexible, and fast. At the hardware level, physical machines
are selectively switched on or of to minimise idle state
energy consumptions. Adaptation begins by first foreseeing
underutilising or overloading conditions and by estimating
the duration of these conditions. The service level objectives
defined in Service Level Agreements for each physical service
and the logical dependencies between services in a workflow
set constraints on adaptive decisions.

The approach assumes that the workload that can be gener-
ated by the execution of each service can be estimated. Chen et
al. [4] have demonstrated that this assumption is feasible. The
adaptation strategies entail (1) the computation of the optimal
adaptation cost, and (2) the determination of the optimal target
servers to which services should migrate or on which new
set of alternative services should be started. Since the target
servers may have different accommodation capacities and each
service to be migrated or decommissioned may be required to
satisfy different set of service level objectives, we modelled
the adaptation at the service level as a multi-dimensional,
multi-objective, multi-choice knapsack problem (MMMKP).
We evaluated three comparable heuristics for this task, namely,
taboo search, genetic algorithm, and simulated annealing. The
taboo search was the fastest, while the simulated annealing
was the most correct one in terms of finding a global optimal
solution.

In the future, we aim to transform a workflow into a proba-
bilistic finite state machine to estimate the energy consumption
of an application. The model will be useful for estimating the
workload that can be generated by a service execution and for
allocating the optimal amount of computing resources.



ACKNOWLEDGEMENT

The authors would like to acknowledge the German Re-
search Foundation (DFG) for partially funding the Project
under agreement: SFB 912/1 2011

REFERENCES

[1] L. A. Barroso and U. Hölzle. The case for energy-proportional
computing. Computer, 40:33–37, December 2007.

[2] W. Binder and N. Suri. Green computing: Energy consumption op-
timized service hosting. In SOFSEM ’09: Proceedings of the 35th
Conference on Current Trends in Theory and Practice of Computer
Science, pages 117–128, Berlin, Heidelberg, 2009. Springer-Verlag.

[3] K. Brill. The invisible crisis in the data center: The economic meltdown
of moore’s law. white paper, Uptime Institute, 2007.

[4] Y. Chen, A. S. Ganapathi, A. Fox, R. H. Katz, and D. A. Patterson.
Statistical workloads for energy efficient mapreduce. Technical report,
EECS Department, University of California, Berkeley, 2010.

[5] Y. Chen, L. Keyes, and R. H. Katz. Towards energy efficient mapreduce.
Technical report, EECS Department, University of California, Berkeley,
2009.

[6] C.-F. Chiasserini and R. R. Rao. Improving energy saving in wireless
systems by using dynamic power management. IEEE Trans. wireless
comm., 2:1090–1100, April 2003.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation - Volume 2, NSDI’05, pages 273–286, Berkeley, CA,
USA, 2005. USENIX Association.

[8] D. Cvijovic and J. Klinowski. Taboo search: An approach to the multiple
minima problem. Science, 267(5198):664–666.

[9] W. Dargie. The role of probabilistic schemes in multisensor context-
awareness. In Proceedings of the Fifth IEEE International Conference
on Pervasive Computing and Communications Workshops, PERCOMW
’07, pages 27–32, Washington, DC, USA, 2007. IEEE Computer Society.

[10] W. Dargie and T. Tersch. Recognition of complex settings by aggregating
atomic scenes. IEEE Intelligent Systems, 23:58–65, September 2008.

[11] T. Erl. Service-Oriented Architecture: Concepts, Technology, and De-
sign. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[12] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a
warehouse-sized computer. In ISCA ’07: Proceedings of the 34th annual
international symposium on Computer architecture, pages 13–23, New
York, NY, USA, 2007. ACM.

[13] D. Fogel. An introduction to simulated evolutionary optimisation. IEEE
Trans. neural networks, 5:3–15, January 1994.

[14] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid
computing 360-degree compared. ArXiv e-prints, 901, December 2009.

[15] J. Hamilton. Cooperative expendable micro-slice servers (cems): Low
cost, low power servers for internet-scale services. In 4th Biennial
conference on innovative data systems research (CIDR), 2009.

[16] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu. Dynamic voltage
scaling in multitier web servers with end-to-end delay control. IEEE
Trans. Comput., 56:444–458, April 2007.

[17] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. ACM
Trans. Algorithms, 3(4):41, 2007.

[18] G. Jourjon, T. Rakotoarivelo, and M. Ott. Models for an energy-
efficient p2p delivery service. In PDP ’10: Proceedings of the 2010
18th Euromicro Conference on Parallel, Distributed and Network-
based Processing, pages 348–355, Washington, DC, USA, 2010. IEEE
Computer Society.

[19] L. Liu, H. Wang, X. Liu, X. Jin, W. B. He, Q. B. Wang, and Y. Chen.
Greencloud: a new architecture for green data center. In ICAC-INDST
’09: Proceedings of the 6th international conference industry session
on Autonomic computing and communications industry session, pages
29–38, New York, NY, USA, 2009. ACM.

[20] A. Merkel and F. Bellosa. Balancing power consumption in multipro-
cessor systems. SIGOPS Oper. Syst. Rev., 40:403–414, April 2006.

[21] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998.
[22] A. Sinha and A. Chandrakasan. Dynamic power management in wireless

sensor networks. IEEE Des. Test, 18:62–74, March 2001.
[23] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware consolidation

for cloud computing. In Proceedings of the 2008 conference on Power
aware computing and systems, HotPower’08, pages 10–10, Berkeley,
CA, USA, 2008. USENIX Association.

[24] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A scalable appli-
cation placement controller for enterprise data centers. In Proceedings
of the 16th international conference on World Wide Web, WWW ’07,
pages 331–340, New York, NY, USA, 2007. ACM.

[25] A. Weissel, M. Faerber, and F. Bellosa. Application characterization
for wireless network power management. In Proceedings of the Inter-
national Conference on Architecture of Computing Systems (ARCS’04),
2004.

[26] C. Ykman-Couvreur, V. Nollet, F. Catthoor, and H. Corporaal. Fast
multi-dimension multi-choice knapsack heuristic for mp-soc run-time
management. In Proceedings of the 2006 international symposium on
system-on-chip, pages 1–4, 2006.


