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Abstract—This paper investigates the role of existing 

“probabilistic” schemes to reason about various everyday 
situations on the basis of data from multiple heterogeneous 
physical sensors. The schemes we discuss are fuzzy logic, hidden 
Markov models, Bayesian networks, and Dempster-Schafer 
theory of evidence. The paper also presents a conceptual 
architecture and identifies the suitable scheme to be employed by 
each component of the architecture. As a proof-of-concept, we 
will introduce the architecture we implemented to model various 
places on the basis of data from temperature, light intensity and 
relative humidity sensors. 

 
 

Index Terms—Context, Context-Aware Computing, Context 
Reasoning, Context Modelling 

I. INTRODUCTION 
Three essential conditions should be satisfied for human 

beings to adapt to their surrounding and to carry out their 
everyday life with ease: perception of what is taking place, 
relating the perceived phenomena with previous experience or 
present expectation, and duly reacting to the perceived change 
in the environment. During the perception process, the human 
brain presents the real-world, not as a collection of raw data, 
but wholly, conceptually, and meaningfully [1]. Moreover, the 
above conditions are not a one-time fulfilment, but a continual 
process which includes the learning of new phenomena and 
the revision of existing beliefs regarding the real-world. 
Depending on the perception faculties and their experience 
(world model), human beings can establish a shared 
understanding of their surrounding at various levels of 
abstraction.   

Likewise, the necessary precondition for developing self-
managing systems (devices, applications, and networks) 
should entail the capability to perceive what is taking place in 
and outside of a computing environment. Only then are self-
managing systems able to adapt meaningfully and exploit 
resources which are available in their surrounding. In other 
words, these systems should become context-aware. However, 
there is a gap between the type of awareness that is required 
for self-management and the sort of real-world aspects which 
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can be captured by employing sensors. This gap is 
characterised by incompleteness, inexactness, and ignorance. 
Incompleteness arises due to the fact that there are always 
certain aspects of the real world which cannot be captured by 
employing physical sensors. Inexactness is less a concern, 
since it can be dealt with by considering the reports of 
multiple sensors which monitor one and the same situation. 
Ignorance can have multiple aspects: (1) we may not be able 
to judge how much we should trust a report of a given sensor 
because there is no technical specification to tell us about the 
accuracy, resolution, sensing range, etc., of the reporting 
sensor; (2) since physical sensors can be influenced by 
external factors (such as ambient noise or even the enclosing 
of the sensor), we may not be able to easily resolve conflicting 
reports from similar sensors; and (3) more importantly, in 
mobile environment, we may not be able to foresee what 
sensors might be available at any given time – in other words, 
we may not be able to determine at design time what aspects 
of a situation of interest we might be able to capture. 

Subsequently, a context capturing task should deal with the 
problem of ignorance at various stages. In this paper, we shall 
investigate the role of some probabilistic reasoning schemes in 
tackling ignorance and in capturing a context as an abstraction 
of a dynamic real-world situation. We shall also propose a 
conceptual framework for context reasoning, and share the 
experience learned during the implementation of the 
architecture.  

The remaining part of this paper is organised as follows: in 
section II, we discuss related work; in section III, we 
investigate the role of some probabilistic schemes in context 
reasoning; in section IV, we introduce the components of our 
conceptual architecture and illustrate its implementation; and 
finally, in section V, we give a brief conclusion. 

II. RELATED WORK 
In the recent past, several architectures and frameworks 

have been proposed for context-aware computing. Most of 
these proposals can be categorised into three main groups. The 
first group focuses on separating the acquisition of a context 
from its consumption. It takes advantage of lessons learned in 
software engineering, decomposing the design of context-
aware applications into various concerns. The second group 
takes a conceptual approach towards context acquisition, 
without prescribing to a particular technology or scheme. The 
third group delves into the process of context acquisition and 
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takes advantage of experiences learned in artificial 
intelligence, image processing, and speech recognition to 
compute a context. The works of Schilit [2] and Dey [3] 
belong to the first group. Gellersen et al. [4] and Coutaz et al. 
[5] are some examples of the second group. The work of Chen 
et al. [6], Gu et al. [7], wang et al. [8], Peltonen et al. [9] 
Korpipää et al. [10], Mäntyjärvi et al. [11], and Wu [12] are 
examples of the third group.  

There is a significant similarity of approach in the first 
group, and depending on how the real world is viewed, they 
can further be divided into two subgroups: In the first 
subgroup, the components of a given architecture or 
framework map to a real-world object or situation – for 
example, an aggregator representing a person or a place [3]. In 
the second subgroup, context is retrieved from a blackboard 
by using a declarative query request. Context sources 
simultaneously post context values on the blackboard and 
applications, without the need to deal with the task of binding 
to individual sources, declaratively request and utilise a 
context. In general, the approaches above consider a context 
as a piecemeal construct, and do not address the question how 
it actually is acquired. A mechanism for its detection is 
implied to be available, and its scope and usefulness is implied 
to be known by all applications which consume it.   

Gellersen et al. and Coutaz et al. offer conceptual 
architectures to help context-aware application developers 
deal with the actual task of context acquisition.   The 
architecture of Coutaz et al. consists of a sensing layer, a 
perceptual layer, a situation and context identification layer, 
and an exploitation layer. The sensing layer generates numeric 
observables; the perception layer is responsible for providing 
symbolic observables at the appropriate level of abstraction; 
the situation and context identification layer identifies the 
current situation and context from observables.  

Similarly, Gellersen et al. propose a layered conceptual 
framework for sensor based computation of context. The 
lowest layer is the sensor layer, which is defined by an open-
ended collection of sensors capturing some aspects of the real 
world. The middle layer is occupied by the cue layer, which 
introduces cues as abstraction from raw sensory data. This 
layer is responsible for extracting generic features from sensed 
data, hiding the sensor interfaces from the upper layer, which 
is the context layer responsible for manipulating the cues 
obtained from the cue layer and computing context as an 
abstraction of a real world situation.  

Neither of the conceptual architecture prescribes to any 
particular algorithm or scheme to illustrate the implementation 
of the architectural layers.  

The third group can be divided into two subgroups: those 
which employ logic- (as well as rule-) based schemes to 
reason about a context of interest and those which employ 
probabilistic schemes. In this paper, the term ‘probabilistic 
schemes’ is used broadly, and encompasses all schemes which 
deal with uncertain data as opposed to factual data. The works 
of Wang et al., Chen et al., and Gu et al. belong to the first 
subgroup whereas the remaining works belong to the second 

subgroup. Since this paper focuses on probabilistic schemes 
and because of the lack of space, we do not discuss logic-
based reasoning schemes any further. 

An essential aspect of a probabilistic scheme as a reasoning 
tool for computing a context is its capability to deal with the 
problem of ignorance discussed in section I. Peltonen et al. 
classify auditory scenes into predefined classes by employing 
two classification mechanisms: 1-NN classifier and Mel-
frequency cepstral coefficients with Gaussian mixture models. 
Subsequently, they could be able to recognise a physical 
environment by using audio information only. The audio 
scene comprises several everyday outside and inside 
environments, such as streets, restaurants, offices, homes, 
cars, etc. The limitation of this approach is the absence of a 
reusable framework or architecture.   

Korpipää et al. propose a multilayer context-processing 
framework to carry out a similar recognition task. The bottom 
layer is occupied by an array of physical sensors which 
measure physical properties. The other layers in the context 
processing hierarchy include a feature extraction layer 
incorporating a variety of audio signal processing algorithms 
from the MPEG-7 standard; a quantisation layer based on 
fuzzy sets and crisp limits; and a classification layer 
employing a naïve Bayesian classifier which reasons about 
complex contexts.   

Wu applies Dempster-Schafer’s theory of evidence to deal 
with uncertainty associated with context sensing. In his 
implementation, an Aggregator receives video and audio 
features from a camera and a set of microphone widgets to 
determine the likelihood of a participant’s focus of attention in 
a meeting.  

Mäntyjärvi et al. proposes a four-layered framework for 
higher-level context recognition. At the lowest level there are 
context information sources. These sources deliver sampled 
raw measurements which map to physical properties. The 
middle layers are occupied by the context measurement and 
context atoms extraction unites, respectively.  After sampling, 
raw signals are pre-processed. In the case of sensor 
measurements, signal values are calibrated and rescaled. Pre-
processed signals are used as input to various feature 
extraction methods in time and frequency domains producing 
features to describe context information. For example, the root 
mean square (RMS) value of an audio signal describes the 
loudness of a surrounding. The first task in context extraction 
is to abstract raw sensor signals and to compress information 
by using different signal processing and feature extraction 
methods. The features to be extracted are chosen depending 
on how well they describe some aspects of a context of 
interest. Extracted features are called context atoms since they 
contain the smallest amount of context information. The upper 
layer is occupied by the context information fusion unit, 
which process the context atoms and computes a higher-level 
context. 

This work was in part motivated by the incompleteness of 
the probabilistic approaches discussed so far. Even though 
attempts were made to identify the various stages of a context 
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computing process and the necessary schemes for it, we 
discovered that certain steps were missing to make the process 
wholesome. For example, in most of the frameworks, pre-
processing and feature extraction layers were identified as 
essential steps, but no particular schemes were proposed to 
carry out these tasks. 

One may intuitively argue that it is possible to employ some 
of the richly available algorithms from image processing or 
speech recognition fields. This might hold true for some 
context recognition tasks, however, some context processing 
tasks pose peculiar challenges of their own which must be 
uniquely addressed. For example, both image processing and 
speech recognition tasks deal with a single sensing element; or 
even if multiple sensing elements are employed, the features 
extracted from each sensing elements are similar; 
subsequently, a similar set of algorithms can be used for each 
sensing element. This may not be the case when we deal with 
heterogeneous sensing elements, for example, when we 
attempt to capture the activity of a person by processing data 
from temperature, light intensity, humidity, and accelerometer 
sensors. 

 Our aim is not to propose an entirely new architecture and 
entirely new context processing algorithms; rather, it is to 
propose a comprehensive framework in which functional 
components are identified, the task of each component is 
properly explained, and the potential processing schemes are 
proposed. In this pursuit, we attempt to bring together the 
various approaches and identify their suitable place for 
generalizing a context processing task. In the next section, we 
will give a summary of the most frequently employed 
schemes. The treatment we give, however, is neither 
exhaustive nor comprehensive.  

III. PROBABILISTIC SCHEMES FOR CONTEXT PROCESSING 
In this section, we discuss fuzzy logic, hidden Markov 

models, Bayesian Networks, and the Dempster-Shaffer theory 
of evidence. Our selection of these schemes depends on the 
potential of each scheme to tackle a particular challenge 
during a context processing task. Therefore, our approach 
must not be understood as a comparative investigation.  

A. Fuzzy Logic 
L.A. Zadeh introduced the fuzzy set theory claiming that 

many sets in the real-world are defined by a non-distinct 
boundary [13]. His theory extends two-valued logic by 
allowing intermediate values such that a gradual transition 
from falsehood to truth, and vice versa, is possible. 
Consequently, notions like cold, warm, visible etc. can be 
mathematically formulated and presented to computers to 
achieve more human-like decisions.  

The fuzzy member function µ(x) – a precise but subjective 
measure which depends on the context of use – attaches a 
numerical value to each element x of a fuzzy set y in order to 
describe the degree of membership of x in y. The range of 
µ(x) lies between [0, 1]; where 0 denotes that x is certainly not 
an element of y; and 1 denotes that x has full membership, that 

is, it is certainly included in y. The intermediate values reflect 
the relative level of membership associated with the item. One 
of the advantages of a fuzzy set is its allowance to define 
linguistic variables which makes sense to human social and 
conceptual settings. For example, the thermal characteristic of 
a room can be described as: very cold, cold, medium, hot, very 
hot. The set of values a linguistic variable can take is called 
the variable’s term set.  

The elements of two or more fuzzy sets can be combined 
(fused) to create a new fuzzy set with its own membership 
function. In the same way crisp sets are manipulated using 
intersection, union, complement, and other set operations, 
fuzzy sets can be manipulated using conjunction, disjunction, 
complement, and containment operations. Another operation 
particular to fuzzy logic is the modifier operation. A modifier 
modifies the meaning of a linguistic variable as well as its 
term set. For example, in the term “very cold”, the modifier 
very modifies the fuzzy term ‘cold’. By chaining primitive 
operations and modifiers, more complex fuzzy sets can be 
generated. Even though the precise interpretation of a 
modifier is application-specific, intuitively, it has either an 
intensifying or a lessening effect on the term it is applied to.  

B. Hidden Markov Models (HMM) 
A Markov chain or process is a sequence of events (called 

states) the probability of each of which is wholly dependent 
on the event immediately preceding it. Given a sequence of 
states: { }nqqqQ ...,,, 21= , the state of nq is determined as: 

( ) ( ) )1(|,...,,| 1121 −− ≈ nnnn qqpqqqqp  
A Hidden Markov Model (HMM) represents stochastic 

sequences as Markov chains; the states are not directly 
observed, but are associated with observable evidences, called 
emissions, and their occurrence probabilities depend on the 
hidden states. The generation of a random sequence is the 
result of a random transition in the chain.  

HMM has been applied to a wide variety of dynamic 
systems, the most salient applications being the ones dealing 
with speech recognition. For these applications, the hidden 
states are the smallest units of a speech called phonemes. 
Every word is thus built from phonemes, which are identified 
with the hidden states. After different hidden Markov models 
are trained on examples, one can run each HMM separately on 
a new word to be recognized. Then the likelihood of every 
HMM is computed on the new word and the highest 
likelihood is chosen. 

In order to model a process with an HMM, the following 
elements should be available: (1) The number of states in the 
model, N; (2) the number of observation symbols, M, as well 
as a probability distribution matrix, B, in each of the states 
describing the occurrence of observable evidence; and (3) the 
state transition probabilities described by a square matrix, A.   

Operations with Hidden Markov Models are often carried 
out with three aims in mind: (1) given the model λ = (A, B,π), 
and a sequence of observations O, one might want to compute 
the likelihood of the observed sequence O, i.e., p(O|λ); (2) 
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given λ = (A, B,π) and an observation sequence O, one might 
want to determine an optimal state sequence for the 
underlying Markov process – in other words, the aim is to 
uncover the most likely hidden states of the HMM; or (3) 
given an observation sequence O and the dimensions N and 
M, one might want to determine λ = (A, B,π) that maximizes 
the probability of O – this is useful for training the model to 
best fit the observed data. 

One particular aspect of a HMM is the presence of 
transition from one hidden state to another. This aspect could 
be very useful to predict human behaviour or a sequence of 
activities. However, to determine a single complex activity by 
considering various correlated observable aspects (primitive 
contexts which can be captured by employing sensors), an 
HMM may not be optimal.  

C. Bayesian Networks 
Bayesian networks apply Baye’s theorem and satisfy the 

Markov’s condition – a node A is independent of node B given 
its parents – to model probabilistic relationships among 
distinctions of interest in an uncertain-reasoning [14]. The 
networks are directed acyclic graphs (DAG) where nodes 
represent random variables and a directed arrow represents 
conditional dependence between the random variables. A 
particular configuration of a Bayesian network refers to an 
instantiation of the random variables with values from a two 
dimensional value vector; the possibility of this configuration 
is determined by its joint probability. 

Operations in BN can be decomposed into inference and 
learning. Inference refers to the computation of a posterior 
probability distribution over a model (or parameters). The 
precondition for inference is that the structure of the network 
is known and the prior probability distribution is already 
available. Learning can refer to the structure of the model, or 
the parameters, or both. Furthermore, learning may take place 
in the presence of either fully or partially observed variables. 
In any case, the goal of learning is to find a single model (or 
set of parameters) which best explains the observed evidence.  

Because a Bayesian Network does not necessarily require a 
transition from one state to another in order to compute the 
global or local state of the network, it can be an excellent 
scheme to compute a single higher level context as an 
abstraction of numerous primitive contexts. 

D. Dempster-Shaffer Theory of Evidence 
Traditional probabilistic schemes dealing with uncertainty 

are established upon two basic assumptions: (1) that the 
analyst has knowledge of the probabilities of all events; where 
there is no sufficient knowledge with regards to some of the 
events, the Principle of Insufficient Reason is applied, and, (2) 
that the axiom of additivity is satisfied. The two basic 
assumptions work fine for aleatory uncertainty. This type of 
uncertainty, also called irreducible uncertainty, class A 
uncertainty, or stochastic uncertainty, results from the fact that 
a system can behave randomly. On the other hand, if we want 
to encode uncertainties resulting from an inconsistent report of 

two or more independent sources which observe one and the 
same phenomenon, the assumptions above may not be 
reasonable assumptions1.  The Dempster-Schafer theory of 
evidence (DST) offers an alternative to traditional 
probabilistic theory by providing schemes to encode epistemic 
uncertainty into the model of a system [15]. 

A DST is defined as an undirected graph with associated 
belief functions. For every variable or node A in the graph, the 
frame of decrement Ω(A) is the set of exhaustive and mutually 
exclusive propositions or hypothesis about A. If X is a node 
which consists of several individual nodes, Ω(A) is the 
Cartesian product of the frames of all conjoining members. 
Making a decision in DST means to choose the best 
proposition from Ω. Only one proposition can be true, 
otherwise the frame has to be redefined.  

Let 2Ω(A) denote the power set of Ω(A). A basic probability 
assignment, m, is a primitive of DST; it defines the mapping 
of the power set to the interval [0, 1]. The value of m for the 
set A, expresses the proportion of all relevant and available 
evidence supports on the claim that a particular element of X 
(the universal set) belongs to the set A, but to no particular 
subset of A. All the remaining subsets of A are represented by 
separate mass functions. The total belief in the subset B⊆Ω, 
where B∈2Ω(A), is measured by the belief function, Bel(A), 
which is defined as:  

( ) )2()(
AB\

∑
⊆

=
B

BmABel   

The Belief function sums up all the basic probability 
functions of the proper subsets B of A.  It follows from 
equation (2) that for any singleton B∈Ω(A), Bel(B) is equal to 
m(B), while for the entire frame Ω(A), Bel(Ω(A)) = 1. The 
Plausibility function, Pl(A), is calculated by summing all the 
basic probability functions of the set B that intersects the set 
of interest A. 

( ) ( ) )3(
AB\

∑
≠∩

=
φB

BmAPl  

The belief value for the hypothesis A may be interpreted as 
the minimum uncertainty value about A, and its plausibility 
value, which is also the “unbelief” value of the 
complementary hypothesis ( ) ( )ABel1APl:A −= , may be 
interpreted as the maximum uncertainty value of A. Thus, 
uncertainty about A is represented by the values of the 
interval ( ) ( )[ ]APlsABel , , which is called the belief interval. 
The length of the belief interval provides a measurement of 
the imprecision about the uncertainty value. 

The DST is also known as combination theory, since it is 
often employed to combine the evidence gathered from two or 
more independent sources in order to minimise the effect of 
imprecision. The Dempster rule of combination is a 
generalisation of Baye’s rule, and is given by:  

 
1 This type of uncertainty is called epistemic uncertainty, subjective 

uncertainty, class B uncertainty, or reducible uncertainty. 
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In (4), K (∈[0,1], represents a basic probability 
assignment function associated with conflict; it is determined 
by summing the products of the basic probability assignments 
of all sets where the intersection is null. 1-K is interpreted as a 
measure of conflict between the different sources. The larger 
K is, the more the sources are conflicting, and the lesser the 
reliability of the combined data. When K equals 1, the 
orthogonal sum does not exist, the sources are totally 
contradictory, and it is no longer possible to combine them. 

IV. THE CONCEPTUAL ARCHITECTURE AND ITS 
IMPLEMENTATION 

A context as a higher-level abstraction of a dynamic real-
world situation can be computed in three steps. The first step 
deals with the capturing of atomic aspects (or primitive 
context types) by directly employing sensors. An atomic 
aspect maps directly to a measurable physical aspect. It can be 
acoustic aspects, thermal aspects, humidity, light intensity, etc. 
To make a primitive context meaningful to a human user, its 
states can be transformed such that they reflect human 
reasoning. For example, the measurement of a temperature 
sensor can be mapped to one of the following conceptual 
states: cold, lukewarm, warm, or hot. The conceptual states of 
a primitive context can be computed using fuzzy logic, as 
distinction between the states is gradual as opposed to well 
defined margins. The second step towards context computing 
deals with the aggregation of several primitive contexts which 
describe one and the same entity. This entity can be a place, a 
device, a person, etc.; it can also be another primitive context. 
In case of a primitive context, aggregation is done to 
disambiguate potential conflicting observations of 
independent sources, where these sources can be either 
sensors or those entities which process fuzzy algorithms. 
Since a number of heterogeneous sensors may observe one 
and the same phenomenon from different angles, they may 
deliver conflicting reports. A simple example is the thermal 
observations of a room from multiple temperature sensors 
which are distributed inside a room; depending on the 
accuracy and resolution of the sensors as well as their spatial 
position, each sensor may report a different measurement. 
Hence, an aggregation process is needed to appropriately 
model the room. As the sensors are independent of each other, 
the Dempster-Shaffer theory of evidence is the best tool for 
combining the different evidences. A DST processor takes as 
its input the fuzzy sets along with corresponding membership 
functions of the lower level, and combines them, using the 
combination rule given by equation (4). The sensors’ accuracy 
or resolution or both, or some prior knowledge of the sensors 
distribution with regard to the scene being observed can be 
used to compute the probability mass function which is vital 
for combining the reports. The third and final stage in context 

computing is the use of a higher-level reasoning scheme to 
compute a context of interest, i.e., the higher-level context. 
Eligible schemes are hidden Markov models and Bayesian 
Networks. If multiple higher-level contexts are to be 
computed, and if there is a time correlation between the 
higher-level contexts, a hidden Markov model is suitable. If, 
on the other hand, we are interested to compute a single 
higher-level context as an abstraction of several primitive 
contexts, a Bayesian network is more plausible. Figure 1 
shows our conceptual architecture.  

 

 
Figure 1: A Conceptual architecture for computing a context. 

 

  
Figure 2: An implementation of the Conceptual architecture. 

 
Since probabilistic schemes deal with beliefs for 

aggregation, for setting up the reasoning scheme, and for 
deciding dependency between the various aspects of a context, 
our conceptual architecture defines the belief component. The 
blue arrows that extend from the belief component to the 
aggregator and the reasoning component explain the belief of 
the system regarding the tasks carried out by the components. 
The green arrow that extends from the reasoning component 
to the belief component revises the belief of the system. The 
model of a computing environment should be updated to 
reflect the perceived change in the environment. In other 
worlds, the facts and beliefs a context computing system 
employs to manipulate primitive contexts should reflect the 
reality. This is possible only if the system accommodates a 
belief revision mechanism. Another reason for belief revision 
(model updating) is the detection of contradictory information 
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within the model [16]. In situations involving imprecise 
knowledge of entities and relationships between them, it is 
possible to arrive at a conclusion which might turn out to be 
incorrect as soon as more reliable evidence becomes available.  

Figure 2 shows our implementation of the conceptual 
architecture. We developed a system to reason about the 
whereabouts of a mobile person. We identified four main 
aspects (primitive contexts) to model various places: light 
intensity, time, relative humidity, and temperature. Each 
primitive context has conceptual states. For light intensity, 
these are: dark (d), visible (v), bright (b), and very bright (vb); 
for time these are: morning (m), noon (n), and afternoon (a); 
for relative humidity, these are: dry (d), modest (mod), and 
moist (m); and for temperature, these are: cold (c), lukewarm 
(lw), warm (w), and hot (h). These conceptual states were 
defined as members of fuzzy sets. We employed several 
Dallas Semiconductor iButton® sensors with different 
accuracy, sensing range, and resolution to deliver the 
primitive contexts. The aggregators we employed have two 
tasks: (1) to combine data from similar sensors and improve 
sensor reading; and (2) to represent a particular place and to 
gather all relevant primitive contexts each of which describes 
a particular aspect of the place. Finally, we employed 
Bayesian Networks to actually determine the whereabouts of 
the person by computing posterior probability distributions for 
all potential places which can be represented by the primitive 
contexts. The belief component of figure 2 is divided into a 
knowledge base (KB) subcomponent and an empirical 
ambient knowledge (EAK) subcomponent. The KB is 
responsible to manage factual relationships – such as 
containment relationships – between various places, while the 
EAK manages conditional (dependency) relationships. A PCS 
is an abbreviation for a primitive context server; it delivers a 
primitive context to a higher level component such as an 
aggregator. The actual reasoning task in the implementation is 
carried out by the Composer, which implements self-
organising Bayesian Networks.  

As can be seen in figure 2, four primitive context servers 
are available to periodically query the sensors they abstract, 
and report their reading to a set of aggregators. The 
aggregators, depending on their specific tasks (i.e., fusion or 
simple collecting data from various heterogeneous primitive 
contexts), subscribe to the primitive context servers and push 
their output to the composer. When the composer receives the 
report of the aggregators, it determines the configuration of a 
Bayesian network by querying the KB and the EAK; 
afterwards, it computes posterior probability distribution to 
determine to what most likely place the sensor measurement 
refers to. We could be able to determine whether a person was 
on a corridor, inside a room, inside a building (i.e., 
discrimination between a room and a corridor was not 
possible), or an outdoor place. 

 

V. CONCLUSION 
In this paper, we investigated the role of various 

probabilistic schemes to reason about various everyday human 
situations on the basis of data from multiple sensors. Instead 
of comparing and contrasting the performance of each scheme 
with respect to other schemes, we attempted to identify its 
suitability in computing a context of interest.  Moreover, we 
proposed a conceptual architecture and identify a probabilistic 
scheme for each of its components. We identified fuzzy logic 
to be useful for defining the conceptual states of a primitive 
context to enable human-like reasoning; DST for combining 
the independent observations of multiple sensors each of 
which observes one and the same phenomenon; and HMM 
and BN for actually computing a higher-level context. To 
demonstrate our approach, we reasoned about the 
whereabouts of a mobile person on the bases of data from 
temperature, light intensity, and humidity sensors as well as 
on the basis of time context. We could be able to discriminate 
whether the person was inside a room, on a corridor, inside a 
building or outdoors. 
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