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ABSTRACT
In energy constrained wireless sensor networks, energy con-
servation techniques are to be applied in order to maxi-
mize the system lifetime. We tackle the problem of increas-
ing network lifetime through the topology control assign-
ment. In a two-dimensional random sensor deployment, the
nodes can estimate the distances to their neighbors and can
vary their transmission ranges accordingly. Supporting self-
organization of the sensor nodes, each node locally selects
its appropriate neighbors according to a neighbor eligibility
metric. Here, we introduce the notion of weighted relaying
regions defined over the plane of a searching node. This
is aimed at dropping out inefficient links in the network
in order to reduce the overall energy consumption. Con-
trary to most topology control protocols that rely on near-
est neighbor approaches, we use a distance measure that is
radio characteristic and channel condition dependent. This
in turn, proves more adequate for energy conservation in
dense network deployments. Considering network dynamics
that might arise due to node mobility or node failures, our
topology control protocol is to be run periodically. Fairness
between the nodes can be increased in updating the topology
considering the changing energy reserves of the nodes. We
verify the performance of the protocol through simulation
results on network graph properties and energy consump-
tion.

1. INTRODUCTION
A wireless sensor network consists of a number of small sens-
ing nodes that communicate with one another in a wireless
fashion. The role of the nodes in the network is to sense their
surroundings for special events and send their data to a sin-
gle final destination, the base station. This is the traditional
scenario of a sensor network as represented in [12]. The base
station is then linked to an external infrastructure, where the
delivered data from the sensors are exploited. Thus, sensor
networks are often referred to as data gathering systems [1]
in which collected data are not interpreted at the sensors,
but only handled further to the base station where data
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Figure 1: Random sensor deployment with the base
station positioned at one end.

evaluation takes place. In Figure 1 a typical sensor network
architecture is illustrated.

Such data gathering systems usually have an arbitrary and
random deployment. The positioning of the nodes is usually
carried out without taking into account any defined struc-
ture or pattern. For instance, sensor node positions could
be dependant on the architectural plan of a construction in
indoor scenarios, or on the geographical nature of a region
in an environmental monitoring scene. Hence, ease of de-
ployment at the installation phase is necessary. In addition,
the construction of the communication network as well as
its configuration should be done without much prior appre-
hension of the system. Therefore, a sensor network should
self-configure itself according to the deployment task. The
positions of the nodes is in general assumed to be station-
ary. However, their frequent breakdowns and the always
changing nature of the wireless channel results in a vari-
able network topology. Therefore, robustness of the network
and its adaptation to these changes should be accounted
for. Wireless sensors should be designed to operate in harsh
conditions where unavoidable failures of single nodes should
not greatly affect the overall system. Therefore, the nodes
should be autonomous and self-organizing in order to adapt
to the changing environments which come along to the var-
ious deployment scenarios of such monitoring systems.

Self-organization in sensor networks, is supported through
the communication protocols and algorithms that work on
the consisting sensor nodes [17]. That is, the nodes exchange
messages between themselves in order to maintain the net-
work requiring no global control. Each node keeps track of
its neighbors, with whom it cooperates, in order to develop
and conserve a connected network in which it functions.

A lot of interest has been gained in wireless sensor networks



in the field of environmental monitoring. An application of
wireless sensor networks is in observing the species that live
in a given region as described in [10]. The sensors have an
advantage of being small which allows researchers to monitor
sensitive wildlife in a non-intrusive way. Moreover, in disas-
ter relief applications such as wild fire detection [20] wireless
sensor networks can also play an essential role. By the use of
thermometers and humidity sensors, the temperature map
of a monitored area can be revealed. On critical temper-
ature increases, immediate action can be taken to hinder
fire breakouts. In such applications, often are the sensors
deployed by the use of airplanes. The sensors then deter-
mine their own location relative to each other or in absolute
coordinates which aids in the localization of the delivered
data.

In such applications, the sensors have to be durable under a
range of environmental stresses. Moreover, they must be so
energy efficient that they can remain in operation with lit-
tle human interaction and maintenance for years at a time.
Therefore, energy conservation techniques for wireless sen-
sor networks are to be addressed at all layers of the network
protocol stack. Topology control protocols have the duty of
trimming out inefficient links in the network. This reduces
the number of neighbors of each node with whom it can
directly communicate with. Thus, reducing the overhead
impacted on routing protocols as well as MAC protocols in
functioning over the topology. Less amount of communica-
tion links in the network reduces the burden in finding opti-
mal routes to the base station, which in turn conserves the
energies spent in message exchange for building the routes.
Due to the nonlinear attenuation of the received signal power
with distance, transmission over shorter hops is beneficial in
requiring less total transmit powers. However, many short
hops can cause an increase in total receive power consump-
tion which increases the overall energy consumption in the
network. Carefully selecting link distances and trimming in-
efficient links can build an overall energy efficient network
topology.

We propose a localized algorithm that enables the self-or-
ganization of the sensor nodes to build the topology of the
network. Taking into account the overall power consump-
tion in the network, we produce an energy-efficient topology
that should prolong the system lifetime in wireless sensor
networks. This is achieved through defining a neighbor eli-
gibility measure that cares for reducing the energy consump-
tion in the overall network and increasing at the same time
the fairness between the nodes.

This paper is organized as follows. First, we discuss related
work in Section 2. Afterwards, we state our problem defi-
nition. Section 4 gives the system model which is used to
characterize our method to build the network topology. In
Section 5, we reveal our topology control protocol. Evalua-
tion of the protocol is made in Section 6. This paper ends
with a discussion of the achieved work.

2. RELATED WORK
There has been considerable research in the field of topology
control for wireless networks, and a considerable number of
protocols has been introduced. However, most of these pro-
tocols address the general ad hoc networks case and not

the all-to-one design of wireless sensor networks. Gener-
ally, the proposed protocols support computational geome-
try techniques to build sparse graphs, or compare to proxim-
ity graphs that have the property of ensuring strong network
connectivity. Moreover, the techniques to build the topol-
ogy differ along with the type of local information available
at the nodes.

In the family of Neighborhood Graphs, a topology control
protocol is presented in [8] and denoted as the r-Neighbor-
hood graph. The authors introduce an adjustable neighbor-
hood region of a node which determines its neighbors. This,
in turn, is used to tune the topology of the network for an
optimization on the node degree which is a trade off to the
power stretch factor of the underlying graph. Further work
with optimization on the node degree is the XTC protocol
[19]. Their constructed graph is shown to be a subgraph of
the Relative Neighborhood Graph (RNG) [7] and is proven
to have a maximum node degree of six, unlike the RNG
which has its node degree unbounded. The protocol is at-
tractive in that local information consist only of neighbors’
signal strength information.

The protocol in [15] denoted as R&M, is one of the earliest
protocols to present minimum power topologies. The work
presents the concept of relay regions to determine the enclo-
sure of each node. This protocol is similar to ours in that all
the nodes potentially send their information to a single mas-
ter site or base station. However, the overall link efficiency
is not studied. The LINT protocol in [13] is noted to be the
first to use different transmit powers for global topological
property through physical linking. The number of physi-
cal neighbors is varied according to different transmission
powers. It is shown that keeping the number of neighbors
of a node within a low and high threshold centered around
an optimal value ensures network connectivity. Simulations
are made on random mobile nodes, however no update pol-
icy is presented. They evaluate their protocol on the aspects
of maximum and average transmit power. In our protocol,
the total power consumption is valuable, since it reflects the
overall communication efficiency.

A similar protocol to LINT is the K-Neigh protocol pre-
sented in [2]. In this work, a distributed topology control
protocol is proposed that uses distance estimation to near-
est neighbors in order to assign the transmission ranges of
every node. As in the LINT protocol, physical links are
maintained. The transmission power is determined accord-
ing to the distance to the nearest kth neighbor. The value
of k is evaluated according to simulation results to guaran-
tee a connected resulting network graph. The protocol is
localized and uses an asynchronous update policy. Further-
more, biconnectivity in the resulting communication graph
is accomplished through trimming unidirectional links. Fi-
nally, an optional pruning phase is applied in order to further
delete inefficient links in the constructed graph and reduce
transmission ranges. Our protocol has a similar structure
to the K-Neigh protocol in its different phases. First, the
nodes are ordered. Then, the first k nodes are chosen as
neighbors. In our protocol, due to a logical ordering assign-
ment, the built links are logical links. However, assigning
the corresponding transmission power to every neighbor has
proven to produce more energy savings than the static trans-



mit power assignment[9].

In [1], a theoretical study on the upper bounds on the life-
time of data gathering sensor networks is made. The au-
thors provide an optimal number of hops to relay data which
should determine the most energy efficient path to the base
station. The number of hops depends on a characteristic
distance and the total distance to the base station. More-
over, the derived characteristic distance is dependant on the
propagation environment and radio parameters. This work
has inspired and is the basis for the overall link efficiency
model presented in this paper. An appealing work support-
ing our work is given in [5], where the author gives twelve
reasons not to route over many short hops. Convincing rea-
sons have been given and shown that longer transmissions
are desirable in ad hoc and sensor networks. Our protocol
is not based on nearest neighbor criteria, and thus supports
routing over longer hops.

3. PROBLEM DEFINITION
Given a random deployment of wireless sensor nodes in the
two-dimensional plane, our main goal is to build and main-
tain the topology of the network in a way to maximize the
lifetime of the network.

Definition 1. Network lifetime is the duration of time un-
til the first battery drain-out among all the nodes in the
network occurs. This is the same as the minimum lifetime
over all nodes [3].

Since the network lifetime is related directly with the lifetime
of each node in the network, the aim would be the same as
to establish fairness between the nodes and maximize the
lower bound of the average node lifetime. Furthermore, the
overall network energy consumption should be minimized.
Since building the topology is made in a distributed manner,
the problem should be seen from the view point of the node.
Each node in the network determines its optimal neighbors
and builds logical links1 with them. Our problem can be
formulated as follows:

Problem 1. How does a node select its neighbors accord-
ing to local information in order to maximize network life-
time through fairness and granting overall link efficiency?

Definition 2. Fairness is achieved when all the batteries
of the nodes are exhausted similarly. The variance between
the energy reserves in the nodes at anytime is minimized.

Definition 3. Overall link efficiency characterizes the ef-
ficiency of the overall energy dissipation in the multi-hop
communication link to the base station. The sum of the
energy consumed in all transmissions and receptions within
the link is minimized.

Our problem is to be tackled utilizing only local information
available at each node. We assume the nodes have relative

1Logical links are links made from a node to its neighbors
according to a logical criterion.

position information of their neighboring nodes. This can be
provided using relative location estimation techniques [11],
such as received signal strength (RSS) measures or time of
arrival (TOA) of the received signal. The second assumption
we adopt is the presence of, to an instinct, updated amount
of energy reserves of the neighboring nodes. This informa-
tion can be made available at each node either through direct
message exchange, or utilizing the routing protocol route dis-
covery overhead in order to update such information. Gener-
ally, energy-aware routing protocols assume the availability
of battery information along the established routes.

A third assumption which is an optional requirement to our
protocol, is the availability of exact position information of
the nodes as well as the location of the base station. This
assumption is a very costly one since to obtain such infor-
mation, either complex algorithms are to be applied on the
network such as triangulation techniques [16], or low power
global positioning systems (GPS) are to be used. Moreover,
the position information can also be programmed explicitly
to each node. This aspect of absolute position information is
often important in different scenarios especially in environ-
mental sensing applications such as water quality monitoring
or precision agriculture, where sensing data and knowing the
corresponding sensor location is essential.

4. SYSTEM MODEL
Given a flat network topology2 of n nodes placed randomly
in the euclidian plane, let V be the set of vertices represent-
ing the nodes and E be the set of undirected edges repre-
senting the communication links between them. The graph
of the network is denoted as G = (V, E). In addition, let
Gdigraph represent the digraph3 of the network with Edigraph

the set of undirected edges.

Each node i, i ∈ V, has an identity, idi, and is represented
in the euclidian plane with its coordinates. A directed edge
between two nodes i and j is denoted as [i → j], [i → j] ∈
Edigraph, and has a distance of d(i, j). An undirected edge
between i and j is denoted as [i ↔ j], [i ↔ j] ∈ E . This pa-
per assumes a completely random distribution of the nodes
in a rectangular field, which pertains to a wide sensor net-
works application area. A completely random distribution
is represented in stochastic geometry [18] with the poisson
point process. The points are equally likely to occur any-
where within a bounded region A, and the probability of
finding n nodes in A is given as:

Pr[n nodes in A] = e−λ · (λ · A)n

n!
(1)

The set of neighbors of i, with which i is directly connected
to, are given in the set N (i) and defined as N (i) = {j|[i →
j] ∈ Edigraph}. Let NL(i) be the neighbor table list, where
the properties belonging to each neighbor of i in N (i) are
stored. NL(i) contains the identity, energy reserve, eligibil-
ity as neighbor measure, and required transmission power to
reach each neighbor. Each node has a maximum transmit
power of Pt−max and can assign varying transmit powers
corresponding to each neighboring node. The transmission

2A flat topology has all its nodes with similar qualifications
to do sensing and organization tasks.
3A digraph is a graph with directed edges.



power from node i to j is denoted as Pt−ij . The residual
energy of a node i at time t is denoted as et

i. Furthermore,
all nodes start with equal initial battery capacity E.

Communication in the network is done over the wireless
medium in which the transmitted signals are attenuated
over distance. It is essential to formulate the loss in signal
strength of the transmitted signal in terms of the traveled
distance. This aids in the design of the network topology and
the representation of the dissipated energy during communi-
cation. During transmission, the electromagnetic wave expe-
riences three basic propagation mechanisms which decrease
its strength over the traveled distance. These physical ef-
fects are reflection, diffraction, and scattering. The received
signal power, in general, decays as a power law function of
the distance separating the transmitter and the receiver [14].
Thus, the received signal power can be written as:

Prx ∝ Ptx

dγ
, (2)

where γ is the path-loss exponent which indicates the rate
at which the path loss increases with distance. Depending
on the type of environment different values of γ are defined.

The power consumption model of the radio transceiver used
in this paper is influenced by the model presented in [6, 1],
which consider varying transmission powers to meet min-
imum receiver sensitivity requirements. This assumption
is certified, since most existing transceivers have the func-
tionality of varying their transmit power levels in several
steps. An example of such a transceiver is the Texas Instru-
ments Chipcon CC2420 [4]. Moreover, the model includes
the energy consumed in signal reception which is in today
transceivers a not negligible amount of energy. The trans-
mitter and receiver consume energy in mainly three sections;
In digital signal processor (DSP), in the front end circuit,
and in the signal amplifier. The power consumption of trans-
mitting a message at r bits/s over a distance of d meters can
be formulated as [6]:

PT (d) = (α11 + α2 · dγ)r (3)

and the power consumed to receive this message is [6]:

PR = α12 · r. (4)

The metrics α11 and α12 are constants and depend on several
factors such as the digital coding and decoding, modulation
and demodulation, and filtering of the signal. Whereas α2

depends on varying factors such as antenna characteristics,
channel conditions, amplifier efficiency, and receiver sensi-
tivity.

5. FETC: FAIR AND EFFICIENT TOPOL-
OGY CONTROL

5.1 Weighted Relaying Regions
The aim in this section, is to formulate a model that rep-
resents weighted relaying regions in the plane for a generic
node in the network. The weighted regions claim the eligibil-
ity of a neighboring node, positioned in the defined regions
of a transmitting node, for it to act as a relaying node. This
is done in an anticipation to increase the overall energy ef-
ficiency in the multi-hop link to the base station. Knowing
that the nodes should only acquire local information on their
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Figure 2: Illustration of the hop model.

neighboring nodes, the efficiency model is hence only an es-
timation. This is the case since the overall link property
is indefinite for the single node. However, it is sufficient to
contribute a criteria for each node to determine its neighbors
in a biased manner.

5.1.1 Background
In [1], M. Bhardwaj, A. Chandrakasan, and T. Garnett in-
vestigate the upper bounds of the lifetime of a wireless sen-
sor network. This drives to the calculation of the minimum
amount of energy that can be dissipated in a multi-hop link.
Hence, if there is the option of deciding the placement of
the intervening nodes between the first and the final node,
then how many nodes are to be placed and at what dis-
tances away from one another. In other words, given two
nodes separated by D meters, what is the optimal number
of hops or the optimal distances separating the intervening
nodes located between them, such that the overall power
consumption is minimized. The authors prove that the op-
timal number of hops Kopt is always one of [1],

Kopt =

⌊
D

dchar

⌋
or

⌈
D

dchar

⌉
(5)

where dchar is introduced as the characteristic distance, in-
dependent of D and calculated as [1]:

dchar = γ

√
α1

α2(γ − 1)
. (6)

where α1 = α11 + α12.

From any node, placing the next hop node at a distance
of dchar on the straight line directing to the base station
leads to an energy efficient hop. However, for a random
deployment of the nodes in the plane, the next hop node is
in general deviated from that optimal position. Interesting
is to model the inefficiency in the energy consumption for the
overall link when relaying through that node. In the next
section, the hop model with reference to the characteristic
distance is designed.

5.1.2 Hop Model
In order to formulate the weighted region in the plane of a
searching node, we define a hop model which represents the
position of a neighboring node with respect to an optimal
position. Hence, in a multi-hop link between an arbitrary
node in the network and the base station, a single hop can
be modeled as illustrated in Figure 2. Assuming node i is
the searching node, the position of the relaying node j is rep-
resented in terms of its deviation from an optimal relaying
position from node i.



Lemma 1. The number of hops, K′
opt, is greater in one

hop or equal to Kopt in Equation 5, if equal distances of
dchar are taken from each node to its relaying node on the
direction axis to the base station.

Proof. Starting from a node i, placing relaying nodes
in successive distances of dchar from one another till the
base station leaves a residual distance in the last hop which
is smaller than dchar and greater or equal to zero. Hence,

K′
opt =

⌈
d(i,BS)
dchar

⌉
. Therefore, from Equation 5, K′

opt has a

difference in one or is equal to Kopt.

Theorem 1. The optimal position of a node j for relaying
a message originating from a node i, lies on the direction
axis to the base station and has a distance of dchar from i.
The characteristic distance, dchar, is given in Equation 6.

Proof. According to Lemma 1, relaying over a node at
a distance of dchar on the direction axis to the base station
has a multi-hop link with K′

opt hops. Hence, a relaying dis-
tance of dchar from each node leads to an efficient multi-hop
link.

From any node i there exists an axis directing to the base sta-
tion and will be represented as the x-axis where node i is the
origin of the coordinate system. The x- and y-coordinates
of a node j in the plane of a node i, are expressed as dchar ·a
and dchar ·b respectively, where a, b ∈ R. The distance from i
to j is d(i, j) = dchar · c, where c =

√
a2 + b2. In this model,

the x-coordinate of j represents the progress4 of the hop,
since it measures the distance traversed in the direction of
the destination. The measure a represents the normalized
progress over dchar. The angle of deviation of the node j
with respect to the direction axis is given as ϕ.

Now, in a multi-hop link with the nodes deviating from the
optimal relaying position, of value is to formulate the num-
ber of hops K with respect to the optimal number of hops
K′

opt and the progress achieved per hop.

Theorem 2. The number of hops K is equal to the ratio
of the continuous value of K′

opt, K′
opt−continuous, and the

normalized average progress per hop, ā, such that

K =
K′

opt−continuous

ā
, (7)

Defining D as the absolute distance from a node i to the
base station, K′

opt−continuous = D
dchar

and ā = 1
K
·∑K

n=1 an.

Proof. Starting from an arbitrary node, the absolute
distance to the base station can be written as follows:

dchar · (a1 + a2 + ... + aK) = D

K∑
n=1

an =
D

dchar

ā ·K = K′
opt−continuous

K =
K′

opt−continuous

ā
4Progress is the “effective” distance traversed in one hop.

Hence we get Equation 7 which concludes the proof.

The optimal value of the number of hops is a natural number
as given in Lemma 1. For a multi-hop link with K hops and
whose optimal number of hops K′

opt we define the measure
ã:

Definition 4. The estimated overall-link hop progress nor-
malized over the characteristic distance and denoted as ã,
is the ratio of the optimal number of hops, K′

opt, and the
number of hops, K:

ã =
K′

opt

K
(8)

For the single hop case, a neighboring node having ã could
possibly result in K

K′opt
increase in the number of hops to

the base station. Given this hop model, we can determine
an estimation of the single hop energy efficiency with respect
to the overall link. In the following section, we derive the
efficiency model.

5.1.3 Hop Efficiency
In order to develop an efficiency measure for the single hop,
we compare the energy consumption of a theoretically opti-
mal multi-hop link to the base station with a link resulting
from our hop model given in the previous section.

The rate of energy consumption of a node acting as a relay,
is the sum of the power consumption for data reception and
transmission over a distance d. The power consumption in
one relay can be formulated as:

Prelay(d) = (α1 + α2d
γ)r. (9)

Knowing that the most efficient route a message can take
from a node to the BS is the one along the direction axis with
equidistant hops of distances dchar, the minimum energy
rate Plink−min that can be achieved is given as:

Plink−min(D) = K′
opt · Prelay(dchar), (10)

where D is the total distance to the BS. However, in a ran-
domly deployed sensor network, the power consumed in a
link of distance D′ ≥ D with intervening nodes deviating
from the direction axis can be formulated as:

Plink(D′) =

K∑
i=1

Prelay(ci · dchar). (11)

Taking Plink−min(D) as a relative measure, building the ra-
tio of Plink−min(D) over Plink(D′) gives a measure of the
efficiency of a chosen link. In maximizing this ratio, the
most energy efficient link can be determined.

Plink−min(D)

Plink(D′)
=

K′
opt · Prelay(dchar)∑K

i=1 Prelay(ci · dchar)
(12)

Theorem 3. The overall link efficiency measure, Λ, of a
multi-hop link can be formulated as:

Λ ≤ ã · γ
c̄γ + γ − 1

(13)

where c̄ is the normalized average link distances over dchar.



Proof. Defining Λ =
Plink−min(D)

Plink(D′) , we can write:

Λ =
K′

opt · Prelay(dchar)∑K
i=1 Prelay(ci · dchar)

=
K′

opt(α1 + α2 · dγ
char)r∑K

i=1(α1 + α2(ci · dchar)γ)r

=
K′

opt(α1 + α2 · dγ
char)

K · α1 + α2 · dγ
char

∑K
i=1 cγ

i

=
K′

opt(α1 + α2 · dγ
char)

K
(
α1 + α2 · dγ

char · 1
K
·∑K

i=1 cγ
i

)

Having cγ a strictly convex function (c ∈ R+, 2 ≤ γ ≤ 6),
we can use Jensen’s inequality for convex functions to get

c̄γ ≤
∑K

i=1(ci)
γ

K
, (14)

Using this and Definition 4, we can further write

Λ ≤ ã(α1 + α2 · dγ
char)

α1 + α2 · dγ
char · c̄γ

.

Substituting dchar given in Equation 6 in the inequation, we
get

Λ ≤
ã

(
α1 + α2

(
α1

α2(γ−1)

))

α1 + α2

(
α1

α2(γ−1)

)
c̄γ

≤
ã(α1 + α1

γ−1
)

α1 + ( α1
γ−1

)c̄γ

≤
ã(1 + 1

γ−1
)

1 + ( 1
γ−1

)c̄γ

≤ ã · γ
c̄γ + γ − 1

The searching node has only information on the neighbor-
ing nodes. Therefore, we need to apply our efficiency model
to the single hop case. A searching node, hence, can only
estimate which nodes in its neighborhood can achieve an ef-
ficient relaying with respect to the overall link. We adapt
Theorem 3 for the single hop case, in substituting the aver-
age values with the single hop values. A neighboring node j
in the plane of a searching node is Λj efficient for the overall
link. Hence, its eligibility of being a neighbor of node i is
determined accordingly.

Λj =
a · γ

cγ + γ − 1
=

cos ϕ · c · γ
cγ + γ − 1

(15)

If a searching node does not have the direction information
to the base station, then it can not estimate the deviation
to the direction axis. Hence, ϕ is set to zero and Λ can be
written as:

Λj =
c · γ

cγ + γ − 1
(16)

5.2 Node Eligibility Metric
The eligibility metric Λj derived in the previous section, de-
fines an efficiency measure for a position in the region of
transmission range of a node. Thus, a neighboring node j

within the transmission range of node i acquires this measure
Λj as its eligibility for being a neighbor, from which the link
to the base station is assumed to have high efficiency over
other nodes. This is one aspect to consider when building
the network, which is essential to reduce the amount of en-
ergy dissipated in the overall network. Another aspect, that
of higher concern to routing protocols is fairness between the
nodes. We adapt to this issue in that nodes that have rela-
tively high energy reserves are also prioritized to be selected
as neighboring nodes. This achieves further fairness in the
network regarding their energy reserves. Routing protocols
usually consider this aspect in establishing paths with high
battery capacities. However, in order to give higher option
to such protocols and unconceal nodes with high energies,
we define the metric Υj =

ej

E
. Like the overall efficiency

metric Λ, Υj is applied on a neighboring node to reveal the
relative amount of energy it has with respect to the other
nodes. Combining both metrics, we can achieve overall link
efficiency and fairness through a common eligibility measure
of a neighboring node. Thus, we define:

Ψj = Λj ·Υj (17)

A node i having node j in its transmission range calculates
Ψj , 0 ≤ Ψj ≤ 1. This determines a measure for node j, for
which node i can estimate how eligible it is to be a neighbor.

In the presence of node failures and node mobility, the topol-
ogy control protocol is to be run periodically to adapt to such
changes. Therefore, message exchange between the nodes is
to be done regularly. Hence, information on energy reserves
can be as well interchanged, and the topology is updated cor-
respondingly. This update shows that the topology of the
network might change over time and is dynamic. Depending
whether the nodes have information on the direction of the
base station, the topology of the network differs. We de-
note the graph where the nodes have direction information
to the base station with FETCD, else, the developed graph
is denoted as FETC.

5.3 Protocol Description
In this section, we describe our topology control protocol,
which is divided in two phases. The first phase is the neigh-
bor discovery phase where each node selects k nodes in its
neighborhood. The neighbor selection is carried out accord-
ing to the node eligibility criterion. The network graph that
is created after this phase is not symmetric. The second
phase of our protocol is concerned in building a symmetric
graph of the already built graph in phase 1. The symmetry
is obtained by adding the reverse edge to every asymmetric
link. The phases of the graph are represented as follows:

Phase 1: Choosing k Neighboring Nodes (For a generic
node i)

1. Node i wakes up at time t1, and announces its iden-
tity (idi) and energy reserve (et1

i ) at maximum power
(Pt−max).

2. Node i receives the messages from the neighboring
nodes and stores their identities in its neighbor list
N (i).

3. Node i estimates the distance to each node in N (i).
Node i has the energy reserves of the neighboring nodes



(ej) as well as the distances to them (d(i, j)), where
j ∈ N (i).

4. Node i calculates Ψj , for each neighbor in its list.

5. Node i chooses the k neighbors in its list N (i) that
have the highest value of Ψ. If originally node i has
less than k neighbors, then all nodes are chosen.

6. Node i updates its neighbor list according to the chosen
nodes in step 5.

The developed graph according to phase 1 of the protocol,
has directed links and the graph is a directed graph, Gdigraph.
Hence, a symmetry phase is necessary to enforce symmetry
in the graph. In this phase we build the symmetric super-
graph of Gdigraph.

Definition 5. The symmetric super-graph of Gdigraph is
defined as the undirected graph G obtained from Gdigraph

by adding the undirected edge [i ↔ j] whenever edge [i →
j] or [i ← j] is in Gdigraph. That is, G = (V, E), where
E = {[i ↔ j]|[i → j] ∈ Edigraph or [i ← j] ∈ Edigraph}.

Phase 2: Enforcing Graph Symmetry (For a generic node
i)

1. At time t2, node i announces its identity (idi) and list
of Neighbors (N (i)) at maximum power (Pt−max).

2. Node i receives the neighbor lists, and calculates the
set of symmetric neighbors. Node i checks all neighbor
lists and finds if it exists there. When that is the case,
it checks if the neighbor list originates from a neighbor
in its neighbor list. If not, the corresponding neighbor
is added to its list N (i).

After the symmetric graph is constructed, node i determines
for each neighbor in N (i) the minimum required transmis-
sion power to reach it and stores it in it neighbor table list
NL(i). On communication with a node in its neighbor list,
the messages are transmitted at the corresponding power
level. The selected neighbors of a node i are surely its logi-
cal neighbors. That is, there exist nodes in its maximum as-
signed transmission range that are not selected in its neigh-
bor list. These nodes in N (i) are used for the purpose of
routing. That is, in order to determine the routes in the
communication graph, only the nodes in the neighbor list
are considered.

6. EVALUATION
6.1 Experimental Set Up
In order to perform comparisons between the network topolo-
gies developed through different protocols and our protocol,
we run simulations using MATLAB R©. First we generate
the node deployment which mainly determines the positions
of the nodes. Then, by using these positions and the chan-
nel characteristics, we build the topologies which define for
each node a set of neighbors with whom it can communicate
directly with.

We denote the Disk Graph, with disk radius equals to the
maximum transmission range, dmax, as the original topol-
ogy (Original). Each node in the network has in its neigh-
bor list the nodes within its maximum transmission range.
The name “Original” is given for two reasons. First, in a
topology control protocol, the main criteria of choosing a
neighbor of a node is that this node lies within transmission
range. Hence, taking the original topology and trimming
it in relation to the used topology control protocol satisfies
this aspect. Second, the original topology has the property
that it contains all possible communication links.

Of the proximity graph topologies, we choose the Gabriel
Graph [7] and the Relative Neighborhood Graph, repre-
sented as GG and RNG respectively, as network topologies
to compare with. Starting from the original topology, the
GG and RNG topologies do not necessarily contain all the
links as in the theoretically built graphs on the deployment.
Links that are longer than the highest transmission range do
not exist. Hence, the graph may lose some of its properties
if the density of the nodes is low. The KNeigh protocol, as
described in [2], builds the topology based on the k near-
est neighbors. The preferred value of k is as well derived in
that work and set to 9. We include for the simulations the
introduced optional pruning phase.

The simulations can be divided in two categories. First,
is the study made in graph theoretical aspects such as the
graph connectivity and node degree. Second, is the aspect
of energy conservation made when events take place in the
network and a flow between the nodes and the final desti-
nation is generated. Starting with the deployment phase,
we define our region of deployment having 500 m × 500 m
dimensions. The number of nodes deployed in this region is
taken as 100, 200, 300, 400, and 500. In turn, different de-
ployment densities are examined. The base station is chosen
to be the furthest node with the highest x-coordinate in the
deployment. This leaves the base station at the edge of the
deployment which is the case in many deployment scenarios.
Furthermore, in a real scenario, the base station has usually
infinite energy supply. This is interesting since our proto-
col considers the energy capacities remaining in the nodes
in order to determine the eligibility of building the links.
Therefore, the base station gets a definite high eligibility if
it is within transmission range, which in turn increases the
number of nodes that are directly connected to it.

The path between each node and the base station is deter-
mined and stored in each node. We use Dijkstra’s algorithm
to find the shortest path from each node to the base station.
On this level, experimentation on the network can be done.
We denote a period of time as a time step where 100 nodes
are randomly chosen from the deployment and one bit of
information is sent from them to the base station. In this
case, for each event starting from node i, the nodes that are
along the path decrease their energies respective to our en-
ergy model. A relaying node consumes reception power as
well as transmission power according to the distance to its
next hop neighbor. The path-loss exponent γ is chosen as ei-
ther 2 or 4 according to the required transmission distance.
Here we introduce the crossover distance, dcrossover, as in
[6]. If the transmission distance is less than dcrossover, γ is
taken as 2. Else, γ is taken as 4. In Table 1, the parameter



Table 1: Parameter values.
Parameter Value

E 2 J
γ 2 or 4
r 1 bits/s

dmax 137 m
dcrossover 86.2 m

α11 50 nJ/bit
α12 50 nJ/bit

α2 10 pJ/bit/m2 (γ = 2)
0.0013 pJ/bit/m4 (γ = 4)

dchar 100 m (γ = 2)
71 m (γ = 4)

values used for simulations are represented.

6.2 Simulation Results
We choose two values of n to test the connectivity of our
graph. We generate 100 random graphs for each k and the
specified node density and we calculate the rate of connec-
tivity of the graphs. In Figure 3, the connectivity rate for
deployments of 100 and 250 nodes is plotted. We observe
that the connectivity rate is high for high density deploy-
ments, such that choosing k = 1 can lead to a high rate
of connectivity. However, for k = 5 the connectivity of the
graph is secured even for low densities, and this measure is
taken as sufficient to assure connectivity of our graph. We
use this value of k for further simulations in this section.

For the five deployment densities, we test the node degree
of the different network graphs. The node degree is the
maximum number of neighbors a node has in the topology.
Minimizing the node degree in the network lessens the over-
head in finding routes in the topology. In addition, each
node has to maintain a small number of neighbors in cases
of node mobility. In Figure 4 we compare the node de-
grees of the different topologies to increasing values of the
deployed nodes. According to our simulations, the RNG
graph has the lowest node degree with respect to the other
topologies as is expected. Whereas, the KNeigh and GG
graphs have a slightly higher node degree. Interesting in
these three graphs is the constant node degree with respect
to node density. The FETC and FETCD topologies have
higher node degrees than the KNeigh, GG, and RNG graphs
which makes our graph not a sparse one. However, accord-
ing to the original topology, the increase in the node degree
is small with node density. the FETCD graph has higher
node degree than the FETC graph, for the following reason.
Since the FETCD protocol has directional information to
the base station, each node selects in the first phase of the
protocol k nodes that are in the direction of the base sta-
tion almost exclusively. In the second phase of the protocol
where graph symmetry is made, the links that are behind
the nodes with respect to the base station are added. With
the directional information property, more links are added
in the symmetry phase of FETCD graph than the FETC
graph which explains these results.

There are two aspects that should be studied when compar-
ing the energy consumption of the different network topolo-
gies. These are the overall network energy consumption and
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the achieved fairness between the nodes. Fairness is revealed
when the variances between the energy reserves of the nodes
is minimized such that the nodes have almost similar ener-
gies after a duration of network operational time. As de-
fined earlier, a time step constitutes of 100 events (nodes)
randomly chosen in the network. In analyzing the energy
consumption of the network, we run 100 time steps for the
five network densities in the deployment region. For each
network density 10 random deployments are generated on
which the events take place. The mean of the results on
the 10 deployments is made to construct the results for the
corresponding network density.

First we study the rate of energy consumption in the net-
work. The rate of energy consumption is the amount of
energy dissipated in the overall network per time step. In
Figure 5, the results are illustrated. Both our graphs, the
FETC and FETCD, acquire the least energy consumption
in the network. With increasing network densities there is a
variation in the energy consumption which is strongly seen
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in the KNeigh, GG, and RNG topologies. These graphs suf-
fer from the increased number of hops on the paths since
they build the topologies according to nearest neighbors.
This increases the amount of total receive energy consump-
tion which comes from the excessive relaying in the overall
network.

The second aspect of comparison between the different topo-
logies is the variance in the energy reserves between the
nodes with increasing time steps. The variance in the energy
reserve of a nodes at a specific time is calculated as such:
Variance in energy reserve of a node = (Mean of the energy
reserves of all nodes - energy reserve of node)2. We plot the
average of all variances of all nodes at the corresponding time
step. In Figure 6, the variance of the nodes energy reserves
after 100 time steps is plotted. We have chosen the same
number of events in a time step for all network densities.
In doing so, no analysis can be made between the variance
in energy reserves corresponding to different node densities
of the same graph. Hence, we compare only the results of

the network graphs for the corresponding node density. The
KNeigh, GG, RNG achieve lower fairness between the nodes
as the original, FETC and FETCD topologies for different
network densities except for the 100 nodes topologies. In
sparse topologies such as the 100 nodes topologies, near-
est neighbor routing has an efficient transmission distance
which leads to comparably good results. For different densi-
ties, the FETCD accomplishes the lowest variances between
the nodes. In comparison to the other topologies, the FETC
and FETCD topologies have a good distribution of the en-
ergy dissipation. Hence, the distances between the nodes in
the FETC and FETCD graphs are energy efficient and fair.
The FETCD has its nodes with the least difference in energy
capacities. This shows, that the longer hops in the original
topology can be unfair for the corresponding nodes in re-
ducing their energy capacities considerably. In that case,
fewer nodes relaying the messages leads to unfairness in the
network.

Decreasing both the overall energy consumption in the net-
work as well as maintaining similar energy levels between
the nodes in a network is a prerequisite for system lifetime
maximization. According to the simulation results, this is-
sue has been achieved and fulfilled.

7. CONCLUSION
Especially in applications as environmental monitoring, the
prolongation of the network lifetime is a benefit for bet-
ter research results. Dense deployment is often is desired
to increase the sensing coverage and the preciseness of the
gathered data. Considering such applications of wireless sen-
sor networks, we have introduced a topology control proto-
col that is designed to meet their requirements. Our as-
sumptions vary between whether directional information of
the base station at the nodes exist. This, in turn brings
us in analyzing two topologies corresponding to the mea-
sure of local information at the nodes. In order to support
self-organization, we restrict our construction of the net-
work topology for a localized algorithm. That is, each node
uses the information present from its immediate neighbors
to make the neighbor selection decision. Each node, selects
a definite number of neighbors that acquire a high eligibility
measure for the defined energy efficiency problem. More-
over, to catch the dynamics of the network and discover
node mobility or node failures, the topology control proto-
col is to be updated regularity. Our protocol enables an
asynchronous update policy, where each node can initiate
the protocol. The message complexity of our protocol is 2n
since each node has to send two messages to determine its
final neighbors.

The energy efficiency of the network and hence the lifetime
maximization problem is tackled through considering two
aspects: The overall network energy consumption efficiency
and the achieved fairness between the nodes. Based on the-
oretical work on upper bounds of the network lifetime, we
exploit a defined distance measure, dchar, that is depen-
dent of the radio characteristics and the channel conditions.
From a node’s view point, an estimation is made over the
neighboring nodes on their overall link efficiency in relaying
a message. This is done according to their positions rela-
tive to an optimal relaying position and the position of the
base station (if existing at the nodes). In turn, the efficiency



of a single hop is estimated. The second aspect of lifetime
maximization through fairness is attained in the following
manner. Through introducing the energy reserves of the
nodes in the neighbor selection criteria, distinction between
the nodes in the aspect of their energy capacities is made.
Nodes with high capacities are more appropriate to relay
messages than other nodes. Hence, on protocol update such
an optimization can be made.

Our results show that our topology is not sparse as the RNG,
GG, and KNeigh topologies. However, with respect to the
original topology, the node degree is slightly increasing with
network density. In energy conservation, interesting results
concerning the energy dissipation rate in the overall network
have been shown. The rates are not affected by increasing
network densities such as the other topologies. Moreover,
on the aspect of the differences in energy reserves between
the nodes, contrary to the RNG, GG, and KNeigh topolo-
gies, we have minimized this measure. The results show that
nearest neighbor topologies are energy inefficient for increas-
ing network densities. The original topology, on the other
hand, contains inefficient long links which as well decrease
the energy efficiency of the network. These results show
that our network topology suits to prolong the lifetime of
the network.
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